# REMOVING RADIOACTIVE CONTAMINATION FROM ION EXCHANGE RESINS USED IN DRINKING WATER TREATMENT

**APRIL 3, 2007** 

James McMahon Dr. M. R. Collins

**Department of Civil Engineering - University of New Hampshire** 

#### Funded by:

United States Environmental Protection Agency (USEPA)
New England Water Treatment Technology Assistance Center (WTTAC)

#### Presentation Outline

- Background
  - Chemistry/Radionuclides/Radium-226
- Radium-226 Treatment Processes
  - Ion Exchange Resins/Water Treatment
- Research Work Tasks
  - Resin Exhaustion Study
  - Resin Regeneration
    - Batch Studies
    - Column Study
    - Field Verification Study

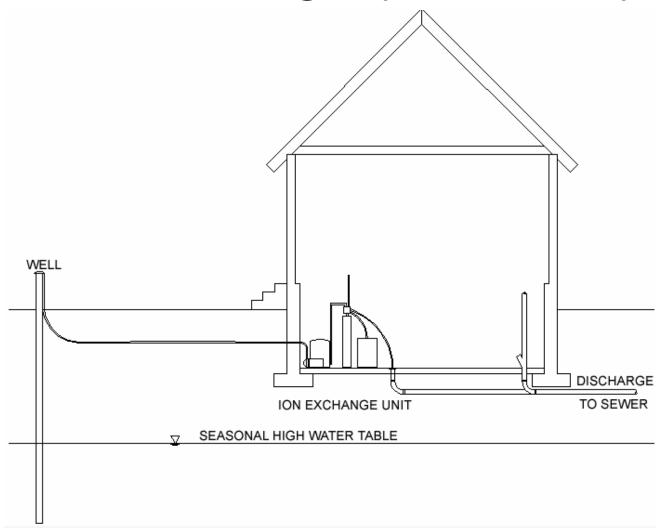
### Drinking Water Regulations for Radionuclides

- 1962 US Public Health Services DWS
  - 3 pCi/L Radium 226
- 1977 USEPA National Interim Prim. DWS
  - 5 pCi/L Combined Radium 226/228
- 2000 Radionuclide Rule USEPA

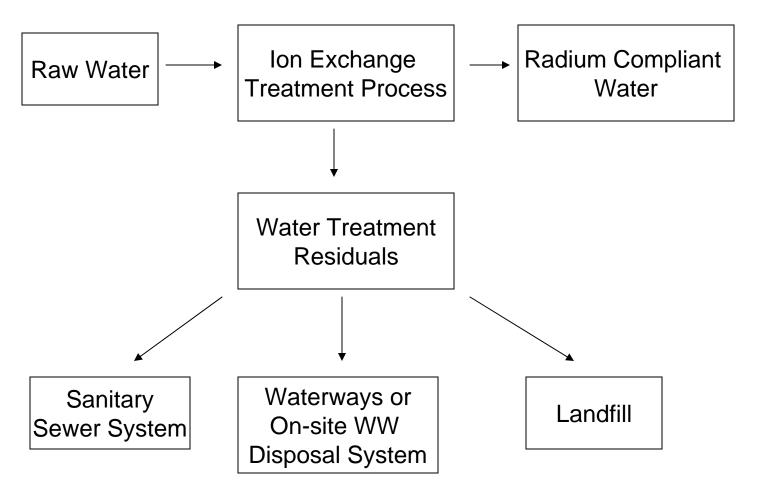
| Regulated Contaminant   | <u>MCL</u>  | <u>MCLG</u> |
|-------------------------|-------------|-------------|
| Beta/photon emitters    | 4 mrem/year | 0           |
| Gross alpha particle    | 15 pCi/L    | 0           |
| Combined Radium-226/228 | 5pCi/L      | 0           |
| Uranium                 | 30 ug/L     | 0           |

### Treatment Options for Radium-226 in Drinking Water

- EPA Best Available Technologies (BAT)
  - Ion Exchange (IX)
  - Lime Softening
  - Reverse Osmosis
- Other Practices
  - Blending water sources to below standards
  - Find alternate well site


# Radium-226 Treatment Using Ion Exchange Resin

- Raw water flows through treatment unit
- Exchanges Ion (Resin Exhaustion)
   2[RSO₃]Na⁺ + Ra²⁺₂ [2RSO₃]Ra²⁺ + 2Na⁺
- Backwash Cycle (Resin Regeneration)
   [2RSO<sub>3</sub>]Ra²⁺ + 2Na⁺ ≥ 2[RSO<sub>3</sub>]Na⁺ + Ra²⁺


#### Cation Exchange Resin

- Effectiveness of IX Resin in Water Treatment based on:
  - Ion affinities
  - Ion concentrations
  - Abundance of oppositely charged sites on resin

# Typical Home Ion Exchange Water Softening System Layout

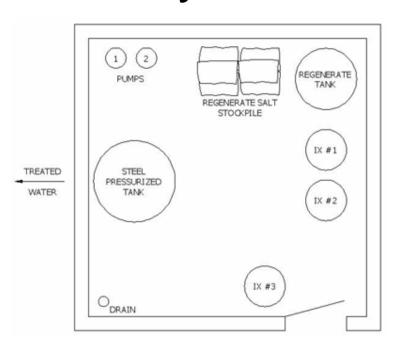


# Ion Exchange Waste Disposal Options Diagram



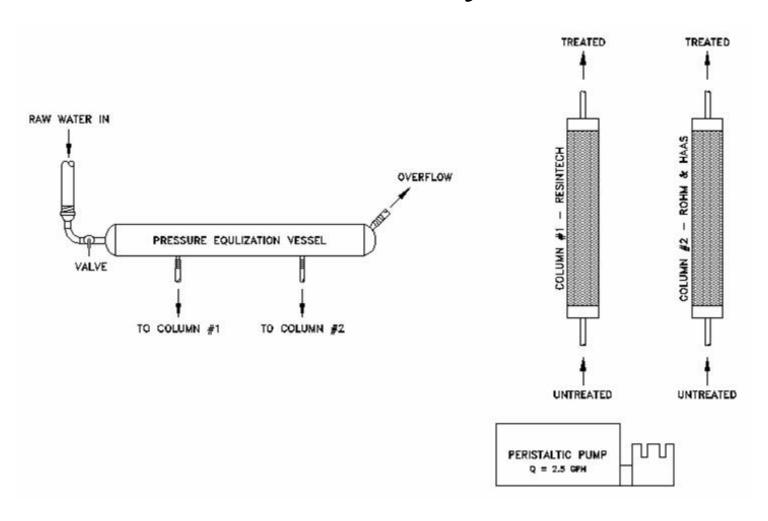
### Project Specific Objectives

- Objective 1
  - Determine the extent of Radium-226 fouling on cation exchange resins
- Objective 2
  - Assess the amount of Radium-226 removal using various regenerate solutions and contact times
- Objective 3
  - Determine the Radium-226 ion-to-resin exposure time has on the Radium-226 removal process


#### Project Work Tasks Outline

- Objective 1
  - Resin Exhaustion Column Study
    - Treat water with high Ra-226 concentrations and accumulate Ra-226 on cation exchange resin for cleaning
- Objective 2
  - Resin Regeneration Batch Studies
    - Assess impact of cleaning variables on exhausted cation exchange resins
  - Resin Regeneration Column Study
    - Optimize most influential regeneration variables
- Objective 3
  - Field Assessment of Fouled Cation Exchange Resins
    - Compare optimized regeneration solution to resins which have been in operation for an extended period of time

# Objective 1 - Resin Exhaustion Study Site Location & Layout




Water Treatment Building
For Apartment Complex
Pelham, NH



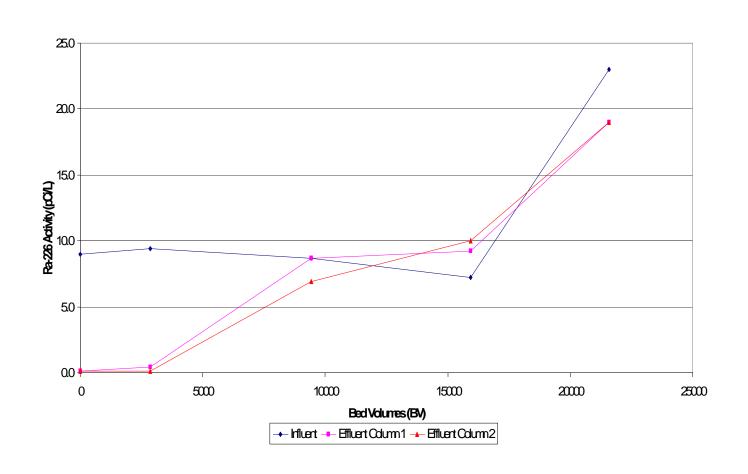
**Treatment Building Layout** 

# Objective 1 - Resin Exhaustion Study Column Layout



# Objective 1 - Resin Exhaustion Study Sampling Event




Sample Volumes 2 L (Radium-226) 14 mL (Metals)



**Raw Water Data** 

Radium-226 (10.8 pCi/L)
Calcium (150.3 mg/L)
Magnesium (25.1 mg/L)
Iron (2.2 mg/L)

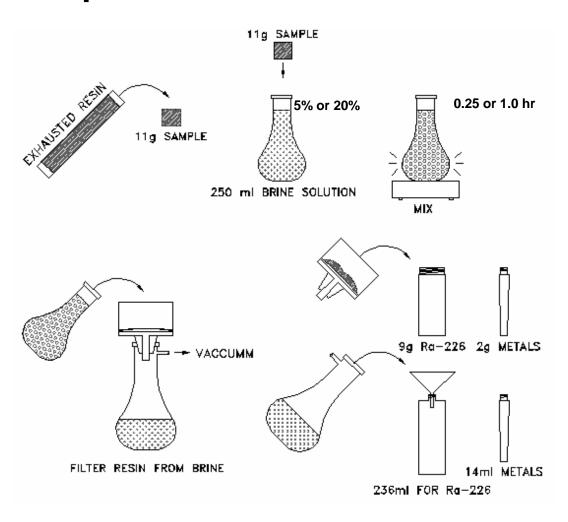
# Objective 1 - Resin Exhaustion Study Radium-226 Breakthrough Curve



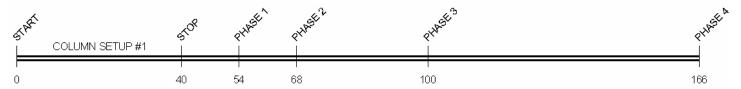
### Objective 1 - Resin Exhaustion Study Cation Accumulations on Resins

| Summary Table - Column Setup 1 (40 Days) |       |      |      |  |  |  |
|------------------------------------------|-------|------|------|--|--|--|
| Item Units Resintech Rohm & H            |       |      |      |  |  |  |
| Radium-226                               | pCi/g | 34.5 | 36.0 |  |  |  |
| Calcium                                  | mg/g  | 48.4 | 8.0  |  |  |  |
| Magnesium                                | mg/g  | 3.0  | 1.1  |  |  |  |
| Iron                                     | mg/g  | 1.0  | 0.5  |  |  |  |

| Summary Table - Column Setup 2 (28 Days) |       |      |      |  |  |  |
|------------------------------------------|-------|------|------|--|--|--|
| Item Units Resintech Rohm & Ha           |       |      |      |  |  |  |
| Radium-226                               | pCi/g | 17.0 | 16.5 |  |  |  |
| Calcium                                  | mg/g  | 16.4 | 9.7  |  |  |  |
| Magnesium                                | mg/g  | 1.7  | 1.4  |  |  |  |
| Iron                                     | mg/g  | 0.1  | 0.3  |  |  |  |


Note: All concentrations based on gram dry weight resin

#### Objective 2 - Resin Regeneration Batch Studies Experimental Approach


To assess various Regeneration Conditions

| Sample | Brine<br>Strength<br>(% NaCl) | рН  | Regenerate<br>Contact<br>Time<br>(hr) | Ra-226 to<br>Resin<br>Exposure<br>Time<br>(days) |
|--------|-------------------------------|-----|---------------------------------------|--------------------------------------------------|
| 1      |                               | F F | 0.25                                  |                                                  |
| 2      | 5                             | 5.5 | 1.0                                   |                                                  |
| 3      |                               | 8.5 | 0.25                                  |                                                  |
| 4      |                               | 0.5 | 1.0                                   | 30 to 166                                        |
| 5      |                               | 5.5 | 0.25                                  | 30 10 100                                        |
| 6      | 20                            | ე.ე | 1.0                                   |                                                  |
| 7      | 20                            | 8.5 | 0.25                                  |                                                  |
| 8      |                               | 0.0 | 1.0                                   |                                                  |

## Objective 2 - Resin Regeneration Batch Studies Experiment Procedure



### Objective 2 - Resin Regeneration Batch Studies Timeline



#### Phase 1

| Sample | Brine Strength | pН  | Regenerate        | Exposure Time |
|--------|----------------|-----|-------------------|---------------|
|        | (% NaCl)       | рп  | Contact Time (hr) | (days)        |
| 1      |                | 5.5 | 0.25              |               |
| 2      | 5              | 5.5 | 1                 |               |
| 3      | ] ,            | 8.5 | 0.25              |               |
| 4      |                |     | 1                 | 54            |
| 5      |                | 5.5 | 0.25              | 34            |
| 6      | 20             | 0.0 | 1                 |               |
| 7      | 20             | 8.5 | 0.25              |               |
| 8      |                | 0.5 | 1                 |               |

#### Phase 3

| Sample | Brine Strength | pН  | Regenerate        | Exposure Time |
|--------|----------------|-----|-------------------|---------------|
|        | (% NaCl)       |     | Contact Time (hr) | (days)        |
| 17     |                | 5.5 | 0.25              |               |
| 18     | 5              | 5.5 | 1                 |               |
| 19     | 3              | 8.5 | 0.25              |               |
| 20     |                |     | 1                 | 100           |
| 21     |                | 5.5 | 0.25              | 100           |
| 22     | 20             | 5.5 | 1                 |               |
| 23     | 20             | 8.5 | 0.25              | 1             |
| 24     |                | 0.5 | 1                 |               |

#### Phase 2

| Sample | Brine Strength | pН  | Regenerate        | Exposure Time |
|--------|----------------|-----|-------------------|---------------|
|        | (% NaCl)       |     | Contact Time (hr) | (days)        |
| 9      |                | 5.5 | 0.25              |               |
| 10     | 5              | 5.5 |                   |               |
| 11     | ]              | 8.5 | 0.25              |               |
| 12     |                | 0.5 | 1                 | 68            |
| 13     |                | 5.5 | 0.25              | 00            |
| 14     | 20             | 5.5 | 1                 |               |
| 15     | 20             | 8.5 | 0.25              |               |
| 16     |                | 0.5 | 1                 |               |

#### Phase 4

| Sample | Brine Strength | pН  | Regenerate        | Exposure Time |
|--------|----------------|-----|-------------------|---------------|
|        | (% NaCl)       |     | Contact Time (hr) | (days)        |
| 25     |                | 5.5 | 0.25              |               |
| 26     | 5              | 5.5 | 1                 |               |
| 27     | J              | 8.5 | 0.25              |               |
| 28     |                | 0.5 | 1                 | 166           |
| 29     |                | 5.5 | 0.25              | 100           |
| 30     | 20             | 5.5 | 1                 |               |
| 31     | 20             | 8.5 | 0.25              |               |
| 32     | 1              | 0.5 | 1                 | 1             |



#### Phase 5

| Sample | Brine Strength | pН  | Regenerate        | Exposure Time |
|--------|----------------|-----|-------------------|---------------|
|        | (% NaCl)       | рп  | Contact Time (hr) | (days)        |
| 33     |                | 5.5 | 0.25              |               |
| 34     | 5              | 5.  | 1                 |               |
| 35     | Ĭ              | 8.5 | 0.25              |               |
| 36     |                | 0.0 | 1                 | 30            |
| 37     |                | 5.5 | 0.25              | 30            |
| 38     | 20             | 5.5 | 1                 |               |
| 39     | 20             | 8.5 | 0.25              |               |
| 40     |                | 0.5 | 1                 |               |

#### Phase 6

| Sample | Brine Strength | pН  | Regenerate        | Exposure Time |
|--------|----------------|-----|-------------------|---------------|
|        | (% NaCl)       |     | Contact Time (hr) | (days)        |
| 41     |                | 5.5 | 0.25              |               |
| 42     | 5              | 5.5 | 1                 |               |
| 43     | 3              | 8.5 | 0.25              |               |
| 44     |                |     | 0.0               | 1             |
| 45     |                | 5.5 | 0.25              | 44            |
| 46     | 20             | 5.5 | 1                 |               |
| 47     | 20             | 8.5 | 0.25              |               |
| 48     |                | 0.5 | 1                 |               |

# Objective 2 - Resin Regeneration Batch Studies Photo Summary 1



Brine Solution & pH meter



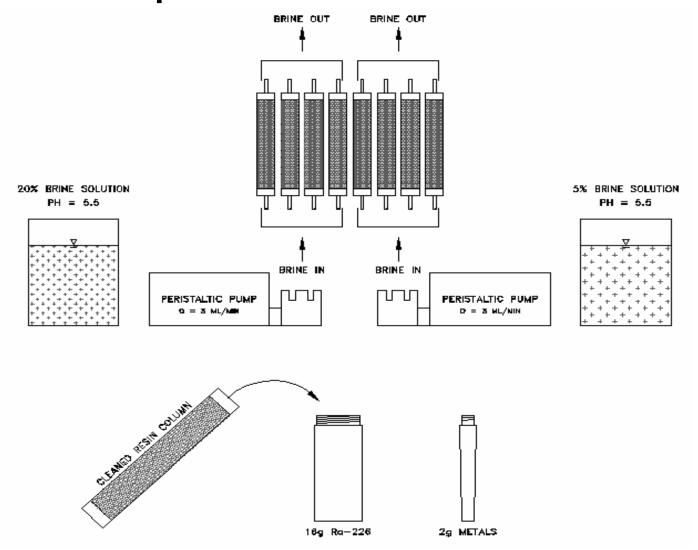
Brine and Resin Samples

# Objective 2 - Resin Regeneration Batch Studies Photo Summary 2



Samples on Mixing Table




Sample Containers & Filter Setup

# Objective 2 - Resin Regeneration Batch Studies Analysis of Variance Results

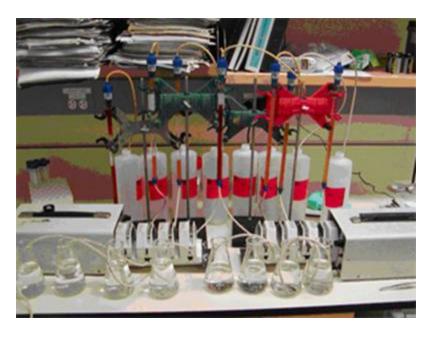
|                                  | Degrees |         |           |              |
|----------------------------------|---------|---------|-----------|--------------|
|                                  | of      | Sum of  |           | %            |
| Factors                          | Freedom | Squares | F Ratio   | Contribution |
| Brine Strength                   | 1       | 1.022   | 105.802** | 46.0%        |
| Resin Type                       | 1       | 0.351   | 36.332 ** | 15.5%        |
| Initial Radium-226 Resin Loading | 1       | 0.239   | 24.751**  | 10.4%        |
| Column Setups                    | 1       | 0.183   | 18.980 ** | 7.9%         |
| рН                               | 1       | 0.075   | 7.817**   | 3.0%         |
| Radium-226 Exposure Time         | 1       | 0.005   | 0.555**   | N.S.         |
| Brine Contact Time               | 1       | 0.000   | 0.01      | N.S.         |
| Error                            | 64      | 0.618   |           | 17.1%        |

<sup>\*\*</sup>Significant at 99% confidence interval N.S. = Factor Not Significant

### Objective 2 - Resin Regeneration Column Study Experiment Procedure



### Objective 2 - Resin Regeneration Column Study Experimental Approach


Using the most influential variables from Batch Studies

|        |              |             |     | Brine    | Contact   | Flow Rate     |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
|--------|--------------|-------------|-----|----------|-----------|---------------|-------|------|---|---|---|------|-----|---|---|---|---|---|------|-----|------|--|
| Column | <u>Resin</u> | <u>Pump</u> | pН  | Strength | Time (hr) | (mL/min)      |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
| 1      | Rohm & Haas  |             |     |          | 0.5       |               |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
| 2      |              | 1           | 1   | 1        | 1         | 1 5%          | 1 50/ | 0.25 |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
| 3      | Resintech    |             |     | 5.5      | 0.5       | 3 ml/min      |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
| 4      |              |             | 5.5 |          | 1         |               |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
| 5      | Rohm & Haas  |             | 5.5 |          | 0.5       | 3 1111/111111 |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |
| 6      |              | 2           | 2   | 2        | 2         | 2             | 2     | 2    | 2 | 2 | 2 | 2    | 2   | 2 | 2 | 2 | 2 | 2 | 200/ | 20% | 0.25 |  |
| 7      | Resintech    |             |     |          |           |               |       |      |   |   | 2 | 2070 | 0.5 |   |   |   |   |   |      |     |      |  |
| 8      |              |             |     |          | 1         |               |       |      |   |   |   |      |     |   |   |   |   |   |      |     |      |  |

### Objective 2 - Resin Regeneration Column Study Photo Summary

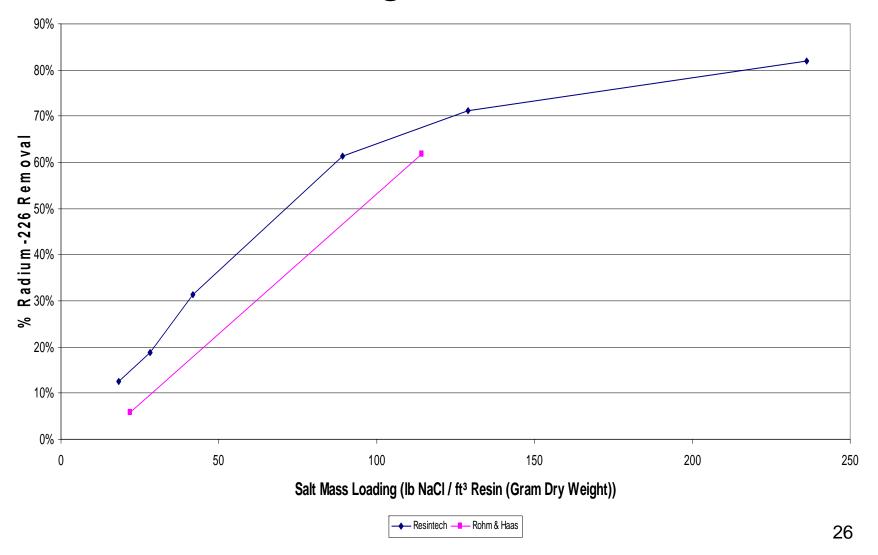


Column Setup



Resin Sample

# Objective 2 - Resin Regeneration Column Study Analysis of Variance Results


|                    | Degrees |         |           |              |
|--------------------|---------|---------|-----------|--------------|
|                    | of      | Sum of  |           | %            |
| Factors            | Freedom | Squares | F Ratio   | Contribution |
| Brine Strength     | 1       | 142.629 | 472.894** | 86.8%        |
| Resin Type         | 1       | 7.526   | 24.953*   | 4.4%         |
| Brine Contact Time | 1       | 0.208   | 0.689     | N.S.         |
| Brine Volume       | 1       | 0.001   | 0.002     | N.S.         |
| Error              | 3       | 0.905   |           | 8.8%         |

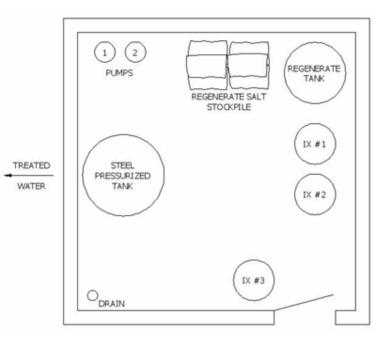
<sup>\*</sup>Significant at 95% confidence interval

N.S. = Factor Not Significant

<sup>\*\*</sup>Significant at 99% confidence interval

### Objective 2 - Resin Regeneration Column Study Salt Mass Loading vs. Ra-226 Removal



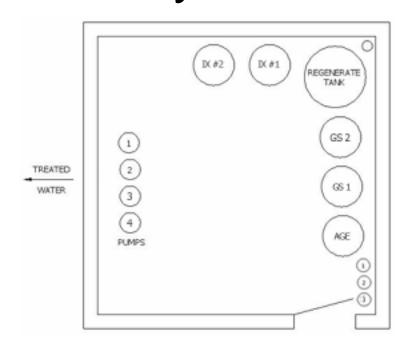

#### Overview

- Sample cation exchange resins in service for greater than 1 year:
  - Pelham, NH
  - Windham, NH
- Sample resin before and after cleaning
- Clean dirty resin using optimized regenerate solution from previous work
- Compare existing cleaning practices with the results

### Objective 3 - Resin Regeneration Field Verification Study Pelham Site Layout



Water Treatment Building
For Apartment Complex
Pelham, NH




**Existing Treatment Building Layout** 

### Objective 3 - Resin Regeneration Field Verification Study Windham Site Layout



Water Treatment Building
For Windham Public Water
Windham, NH

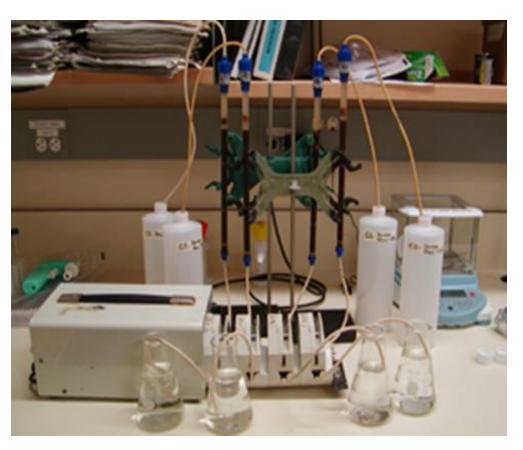


**Existing Treatment Building Layout** 

# Objective 3 - Resin Regeneration Field Verification Study Site Comparison

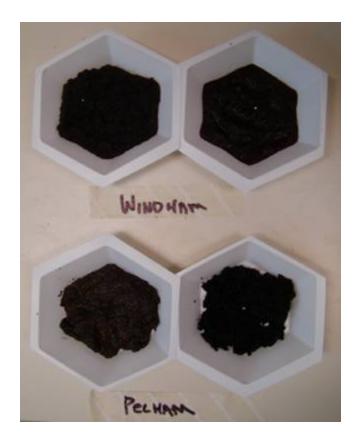
|                       | Pelham, NH    | Windham, NH                       |
|-----------------------|---------------|-----------------------------------|
| EPA ID                | 1852080       | 2542030                           |
| Date Installed        | Jan-96        | Nov-05                            |
|                       |               |                                   |
| Treatment for         | 22 Apartments | Small Community (200 Connections) |
|                       |               |                                   |
| Average Flow          | 2.4 gpm       | 80 gpm                            |
|                       |               |                                   |
| Frequency of Backwash | 2 days        | 1 day                             |
|                       |               |                                   |
| Radium-226 (pCi/L)    | 10.4, 16      | 0.8 -4.4                          |
| Radium-228 (pCi/L)    | 0.1, 0.9      | 0.4                               |
| Gross Alpha (pCi/L)   | 0.6           | 4                                 |
| Uranium (pCi/L)       | 27-81         | 30                                |
|                       |               |                                   |
| Well Depth            | 575-625 ft    | 700-950 ft                        |

#### Sample Locations




- Brine (500 mL)
  - Before Cleaning
  - After Cleaning
- Resin (200 g)
  - Before Cleaning
  - After Cleaning
- Raw Water (2L)
- Treated Water (2L)

#### Procedure Photo Summary




Adding Resin to Column



Column Setup

### Sample Photo Summary





Resin Samples

**Brine Samples** 

#### Conclusions

- Objective 1
  - Resin Exhaustion Study
    - Ra-226 buildup is possible on cation exchange resins and occurs past hardness breakthrough
- Objective 2
  - Resin Regeneration Batch Studies
    - Brine strength or salt concentration is most influential cleaning factor
  - Resin Regeneration Column Study
    - Higher salt mass resin loadings (lb NaCl per ft³ resin) will more effectively clean cation exchange resins
    - Higher salt mass loadings show diminishing removals (non-linear relationship)
    - No Radium-226 removals greater than 85%
- Objective 3
  - Resin Regeneration Field Verification Study
    - Treatment plants with regular maintenance and consistent salt crock levels can extend the life expectancy and effectiveness of the ion exchange resin in drinking water treatment (hypothesis)

#### Recommendations

#### Treatment Operators

 Maintain high salt mass loading on resin to optimize regeneration and Radium-226 removal from cation exchange resins

#### Designers

 Consider space requirements for ease of maintenance for operators when designing treatment system layout

#### Developers

 Pursue other drinking water sources if groundwater contains excessively high levels of radionuclides

### Questions?