Optimization of Bioretention Soil Mix for Nutrient Removal
LID Research and Innovation Symposium

April 3, 2014
UNH Stormwater Center, Environmental Research Group,
Department of Civil Engineering
University of New Hampshire
Special Thanks

Tom Ballestero – UNHSC Director
Iulia Barbu – AECOM (UNHSC PhD Student)
Tim Puls – UNHSC
Robert Roseen – Geosyntec
Robin Stone – UNHSC
Funders:
Stantec
EPA Region 1
Part of the Problem – Point Source Pollution
Impact of Impervious Cover

Stream Quality

- Good
- Fair
- Poor

Watershed Impervious Cover

- Sensitive
- Impacted
- Non-Supporting
- Urban Drainage

Adapted from Schueler
LID in 2013
TSS Removal Efficiencies

The graph shows the TSS removal efficiencies for various systems and methods:

- **Stone Swale**: Approximately 50% removal
- **Veg Swale**: Approximately 60% removal
- **Berm Swale**: Approximately 40% removal
- **Retention Pond**: Approximately 30% removal
- **HDS Systems**: Approximately 90% removal
- **Pipe Infiltration**: Approximately 80% removal
- **Infiltration Chamber**: Approximately 70% removal
- **MTD Filter**: Approximately 60% removal
- **Bioretention (4)**: Approximately 50% removal
- **Tree Filter (2)**: Approximately 40% removal
- **Gravel Wetland**: Approximately 30% removal
- **Porous Asphalt**: Approximately 20% removal
Unit Operations & Processes (UOPs) in the Gravel Wetland

- Physical Operations
- Biological Processes
- Chemical Processes
- Hydrologic Operations
What we know

• Nitrogen is controlled through vegetative uptake and anaerobically through microbial denitrification

• Phosphorus is controlled through veg uptake and sorbed to electrostatically charged soil particles (clay/humus/organic matter)
Mass loading for DRO, Zn, NO₃, TSS as a function of normalized storm volume for two storms: (a) a large 2.3 in rainfall over 1685 minutes; (b) a smaller 0.6 in storm depth over 490 minute. DRO=diesel range organics, Zn= zinc, NO₃= nitrate, TSS= total suspended solids.
Experimental Design

Phase 1: Test Drain time and ISR:WQV Ratio

Phase 2: Test bioretention soil mix and four different soil amendments

Phase 3: optimize the ratio of loam to sand for P removal, as well as to further optimize the soil to soil amendment ratio for top mixes (\(\text{Fe}_2 \) and \(\text{WTR} \))
Phase 1

<table>
<thead>
<tr>
<th>Column #</th>
<th>Soil Mix and saturation zone size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-N0</td>
<td>UNHSC BSM with no saturation zone (control)</td>
<td>- Drainage to filter ratio 80:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Soil depth in columns: 24”</td>
</tr>
<tr>
<td>T1-N1</td>
<td>UNHSC BSM with 25% WQV</td>
<td>- 12 hour drain time</td>
</tr>
<tr>
<td>T1-N2</td>
<td>UNHSC BSM with 50% WQV</td>
<td>- Soil tested: UNHSC mix</td>
</tr>
<tr>
<td>T1-N3</td>
<td>UNHSC BSM with 75% WQV</td>
<td></td>
</tr>
<tr>
<td>T1-N4</td>
<td>UNHSC BSM with 100% WQV</td>
<td></td>
</tr>
<tr>
<td>T1-N5</td>
<td>UNHSC BSM with 25% WQV</td>
<td>- Drainage to filter ratio 80:1</td>
</tr>
<tr>
<td>T1-N6</td>
<td>UNHSC BSM with 50% WQV</td>
<td>- Soil depth in columns: 24”</td>
</tr>
<tr>
<td>T1-N7</td>
<td>UNHSC BSM with 75% WQV</td>
<td>- 30 hour drain time</td>
</tr>
<tr>
<td>T1-N8</td>
<td>UNHSC BSM with 100% WQV</td>
<td>- Soil tested: UNHSC mix</td>
</tr>
</tbody>
</table>
Nitrogen Results

DIN (mg/l)
Nitrogen Results
Phase 2: Phosphorus

<table>
<thead>
<tr>
<th>Column #</th>
<th>Soil Mix</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-P0</td>
<td>UNHSC BSM (control)</td>
<td></td>
</tr>
<tr>
<td>T2-P1</td>
<td>UNHSC 95% BSM + 5% WTR</td>
<td>• Drainage to filter ratio 80:1</td>
</tr>
<tr>
<td>T2-P2</td>
<td>UNHSC 90% BSM + 10% WTR</td>
<td>• Soil depth in columns: 24”</td>
</tr>
<tr>
<td>T2-P3</td>
<td>UNHSC 97% BSM+3% Fe₂</td>
<td>• 24 hour drain time</td>
</tr>
<tr>
<td>T2-P4</td>
<td>UNHSC 94% BSM+6% Fe₂</td>
<td>• Soil tested: UNHSC mix</td>
</tr>
<tr>
<td>T2-P5</td>
<td>UNHSC 97% BSM+3% Slag</td>
<td></td>
</tr>
<tr>
<td>T2-P6</td>
<td>UNHSC 95% BSM+5% Slag</td>
<td></td>
</tr>
<tr>
<td>T2-P7</td>
<td>UNHSC 95% BSM +5% Limestone</td>
<td></td>
</tr>
<tr>
<td>T2-P8</td>
<td>UNHSC 90% BSM +10% Limestone</td>
<td></td>
</tr>
</tbody>
</table>
Phosphorus Results

Phase 2 - Phosphorus as PO4-P

PO4 (ug/l)

Control 5% WTR 10% WTR 3% Fe 6% Fe 3% Slag 5% Slag 5% Limestone 10% Limestone Influent
Phase 2 - PO4-P

Orthophosphate-P (μg P/L)

Storm number

T2_P0
T2_P5
T2_P6
T2_P7
T2_P8
T2_P1
T2_P2
T2_P3
T2_P4
Phase 3: Phosphorus Optimization

<table>
<thead>
<tr>
<th>Column #</th>
<th>Soil Mix</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4-P1</td>
<td>90% Stantec loam + 10% sand</td>
<td>• Drainage to filter ratio 25:1</td>
</tr>
<tr>
<td>T4-P2</td>
<td>75% Stantec loam + 25% sand</td>
<td>• Soil depth: 12”</td>
</tr>
<tr>
<td>T4-P3</td>
<td>60% Stantec loam + 40% sand</td>
<td>• Percentage of amending materials was based on test results from Phases 2 and 3</td>
</tr>
<tr>
<td>T4-P4</td>
<td>45% Stantec loam + 55% sand</td>
<td></td>
</tr>
<tr>
<td>T4-P5</td>
<td>30% Stantec loam + 70% sand</td>
<td></td>
</tr>
<tr>
<td>T4-P6</td>
<td>15% Stantec loam + 85% sand</td>
<td></td>
</tr>
<tr>
<td>T4-P7</td>
<td>100% sand</td>
<td></td>
</tr>
<tr>
<td>T4-P8</td>
<td>0.5% Fe2 + 99.5% UNHSC mix</td>
<td></td>
</tr>
<tr>
<td>T4-P9</td>
<td>2% WTR + 98% UNHSC mix</td>
<td></td>
</tr>
</tbody>
</table>
Optimization Results

![Box plot showing the distribution of PO4 (ug/l) for different treatments. The x-axis represents various soil and water treatments, including loam, sand, Fe2, and UNHSC in different percentages. The y-axis represents the concentration of PO4 in micrograms per liter. The box plots indicate the median, quartiles, and outliers for each treatment, allowing for a visual comparison of the effectiveness of different treatments in reducing PO4 concentrations.](image-url)
Conclusions - the obvious!

- Compost leaches nutrients
- Filters are superior at sediment removal
- Hydraulic loading ratio and retention time have a large influence on performance
Conclusions – the promising...

• Modified bio systems show remarkable improvements to DIN and Ortho-P removals in the lab and in the field: ~ 60 - >90%
• Nitrogen removal is less media dependent and improves with ISR and with longer retention
• Loam has an excellent P-sorp capacity and should be incorporated in higher proportions in BSM
Conclusions – the curious...

• Details regarding BSM components are vague at best
• If optimal RE are to be achieved designs should be fine tuned and systems maintained
Questions?