Examination of Thermal Impacts from Stormwater BMPs

In a study in Durham, New Hampshire, four years of runoff temperature data were examined for a range of stormwater best management practices (BMPs) in relation to established environmental indicators.

The stormwater BMPs examined included:

Conventional
- Vegetated Swale
- Detention Pond
- Retention Pond

Low Impact Development
- Bioretention
- Gravel Wetland

Manufactured Treatment Devices
- Storm Tech Isolator Row
- ADS Infiltration System
- Hydrodynamic Separator

Surface systems that are exposed to direct sunlight have been shown to increase already elevated summer runoff temperatures, while systems that provide treatment by infiltration and filtration can moderate runoff temperatures by thermal exchange with cool subsurface materials.

The storm drain system in this study had an annual average event mean temperature (EMT) greater than the mean groundwater temperature of 47°F that commonly feeds coldwater streams.

The examination of BMPs indicates that outflow from the larger surface systems is warmer and more variable than from parking lots. The filtration and infiltration systems cooled stormwater runoff to temperatures close to groundwater temperature.

Top: A view of a healthy coldwater fishery. Center: Large parking areas store tremendous amounts of heat which is transferred into stormwater runoff. Bottom: Subsurface treatment systems such as gravel wetlands can buffer temperature impacts for stormwater runoff.

The full report can be found at www.unh.edu/unhsc/thermal-impacts.
Surface Systems: Thermal Extremes

The summer temperatures of the two stormwater ponds, vegetated swale, and HDS (Hydrodynamic Separators) systems, indicate that they provide little to no reduction of high runoff temperatures.

The Retention and Detention ponds have the largest variation in temperature. The Retention Pond is the only system to exceed both the Upper Optimum Limit (UOL) and the Lethal Limit of 80°F, however, the Detention Pond with a maximum temperature of 79.4°F comes very close.

The permanent pool of water in the Retention Pond appears to act as a heat sink during periods of extreme heat.

Filtration & Infiltration Systems: Thermal Buffers

Filtration and infiltration systems showed the strongest ability to reduce temperature variations. The gravel wetland, the ADS (Advanced Drainage Systems™) Infiltration System, and the StormTech Isolator Row have a strong capacity to reduce temperatures of runoff.

The Bioretention system showed minor buffering capacity and was consistently cooler in the summer and warmer in the winter than the runoff. These filtration and infiltration systems are, on average, reducing the summer temperatures and increasing the winter temperatures of the runoff to near the average groundwater temperature of 47°F.

The two subsurface infiltration systems, ADS and STIR, are the only systems with mean July temperatures within the optimum zone of 45°F to 65°F for coldwater aquatic species. All other systems result in runoff within the stress zone for aquatic species, between 65°F and 80°F.

The Gravel Wetland, the ADS infiltration system, and the Isolator Row systems have the lowest exceedance values of the UOL at 13.0%, 5.0%, 1.5% respectively.

Comparison of summer temperatures for two streams: Wednesday Hill Brook (unimpacted) and College Brook (impacted); a wet and dry pond, a gravel wetland, and subsurface infiltration (Stormtech Isolator Row) with environmental indicators for cold water fisheries:

Average Annual Groundwater Temperature (GW) = 47°F
Lower Optimum Limit (LOL) = 45°F
Upper Optimum Limit (UOL) = 65°F
Lethal Limit (LL) = 80°F