

Lab Reports

Scientific papers, especially lab reports, are generally very structured, concise, and written in third person. Writers and Writing Assistants can use this handout as a guide for discussing the effectiveness and completeness of a lab report. They should always compare this handout to the guidelines or grading rubric provided by the lab instructor. This handout is not intended to be a set of rules, but a resource of popular guidelines.

Style

- Use concise, formal language.
- Use past tense to describe the experiment.
- Unless directed otherwise by the professor, avoid the use of first-person pronouns (e.g., I, we, my, ours). Focus on the object, problem, or apparatus being studied, not the researcher.

Suggested Order for Writing

- This varies, but professionals who prepare research reports tend to draft the different sections in the following order: Results, Materials and Methods, Introduction, Discussion, References (Literature Cited), Abstract.
- For "cookbook" (educational) labs or when the data require very little interpretation or analysis, students may prefer to begin with the Introduction and write straight through to the Discussion/Conclusion.
- An abstract, if required, should always be written last.

Organization

Title

- The Effect of _____ on ____. This is basic format, but you can deviate depending on the experiment type.
- Lab partner name.

Abstract

- Major points of each section.
 - Introduction (what is being studied and why?)
 - Materials/Methods (perform study)

- Major points of each section.
 - Introduction (what is being studied and why?)
 - Materials/Methods (perform study)
 - Results (findings)
 - Discussion (how findings relate to hypothesis, meaning of results, why results are important)
- It is short (250 words)
- It is written last

Introduction

- Background information
 - Relevant theory and facts—think textbook readings, articles, lecture notes, etc.
 - Justification of the study this is often found in the lab manual or textbook readings
 - Citations
- Central research question
 - Outline the question(s)
 - Explain why it is important or interesting in the field (check lecture notes, textbooks, and articles for help with this)
- Hypothesis and predictions
 - Provide your hypothesis clearly
 - Provide the rationale for why you believe this (use scientific knowledge to support this)
 - Alternative or null hypothesis may also be considered
- Style
 - Active or passive voice? Check with instructor.
 - Third person—avoiding pronouns may be necessary; check with instructor
 - Past tense

Methods

- Briefly describe the experimental approaches/procedures
 - Clear and concise instructions
 - Should be able to replicate the experiment based on the methods
 - Explanation of how variables were controlled
 - Number of replications (n=?)
- Analytical approaches
 - Statistical measurements (explanation of tests)
 - Identify and describe any equations or software used
- Style
 - Chronological
 - Paragraph form
 - Past tense

Results

- Explain what happened in words summarized and with figures and tables
- Reference each table/figure in the text and in the order in which they appear
- Describe important trends and key pieces of information gained
 - Highlight the most important parts that will appear no later in the discussion section
 - Statistics and statistical analyses are important here
- Were the results significant? (p>.05?)
 - If the results are unclear, do not try to imply something that cannot be supported by the data
- NO interpretations—just report the facts
- Negative or "odd" results? Make sure you identify why you are leaving certain data out of the results or address why it was omitted in the discussion section
- Figures and tables
 - Figures
 - Use appropriate graphs to identify and show trends
 - Units and labeled axis
 - Easy to read and clear
 - Error bars, p-values, etc. included when appropriate
 - Legend
 - Address all aspects of the graph (e.g., error bars, DNA markers, etc.)
 - Should be able to stand on its own without the report
 - Tables
 - Column and row headings with units included
 - Only include important data (not raw) unless otherwise assigned. Check the assignment
 - Organization
 - First include all the text, then all the figures/tables come at the end
 - Organize figures/tables in chronological order

Discussion

- Interpretation of the results
 - Does the experiment support your hypothesis? Avoid phrases like "this proved my hypothesis"
- Expected or unexpected results? Why/why not?
- Cover all the trends and important data points you mentioned in the results—address any negative or odd results here
- Accuracy and replicability of the results
- Discussion of errors/limitations (if appropriate)
 - Anticipate readers' questions/concerns/criticisms and try to address these if possible
 - Here is where you could include other follow up research or studies
- Implications of your results
 - Larger context of literature and "the big picture": "why should you care?"

- Larger context of literature and "the big picture": "why should you care?"
- Citations
 - If necessary to support any ideas that you reference
 - To discuss how your study relates to other existing studies or larger concepts
- Conclusion sentence
 - How does your experiment relate to others?
 - Why is your data important?
 - How can it be applied to the rest of the world?

Citations

- Check assignment for proper citation format
- Check to make sure all citations are accounted for

Final Advice

- The word "data" is plural and so requires a plural verb. ("The data show..." not "The data shows...").
- The words "significant" and "correlation" should be reserved to those instances when a statistical analysis has been performed. Be alert for other specialized vocabulary.
- Avoid using the word "you." You are reporting your experiment, not giving directions.
- Use acronyms only after presenting the full term with the acronym in parentheses. For example: mannitol salt agar (MSA).
- Use a space between numbers and units (e.g., 12 mg).
- Limit use of jargon or lesser-known abbreviations. Use clear definitions of technical terms and use the simplest terms when possible (e.g., say "goldfish" instead of *Carrassius Auratus*).
- Each section should be able to stand alone.
- Sections should be written in paragraph from with topic sentences and helpful transitions.

