Objective & Hypotheses

Programmed cell “suicide”—apoptosis—occurs in normal cells that turn cancerous (Böttger et al., 2008). The primary mechanism of apoptosis occurs in the nucleus using a special protein: p53, but secondary action may occur in the mitochondria, mediated by a certain enzyme: HAUSP (Figure 4). (Böttger et al., 2008; Vaseva & Moll, 2008). Understanding this pathway can further the development of cancer treatments in diseases such as human neuroblastoma, and can enhance our current knowledge of the cell cycle.

- **Hypothesis 1**: Treating cells with cancer drug—etoposide—will induce “cell suicide” via the nucleus
- **Hypothesis 2**: Preventing p53 from entering the nucleus and inhibiting the HAUSP enzyme will prevent apoptosis

Materials & Methods

Induce Cellular Stress

IMR-32 Human Neuroblastoma cells were cultured to a concentration of 1.4 x 10^5 cells/ml and were exposed to 1.0 mM/L of the cancer drug, etoposide, for 0, 6, 12 & 24 hours.

Detecting p53 and Apoptosis

1) Morphology stain: Romanovski stain
2) Immunocytochemistry: Vectastain
3) Fluorometric Analysis: Fluorometric TUNEL assay

Results

- **Figure 1**: Morphology stain: visible membrane disruption at time 6, and 24 hrs compared to 0 hrs.
- **Figure 2**: Immunocytochemistry: Localization of p53 at the nucleus at time 12 hrs compared to time 0 hrs.
- **Figure 3**: Fluorometric Analysis: tagged fragments of DNA at t = 24 hrs.
- **Figure 4**: p53 entry into the mitochondria (Vaseva & Moll, 2009)

Discussion & Conclusion

- Visible “blebbing” in morphology stain with increased time of etoposide exposure (Figure 1).
- Localization of p53 to the nucleus indicated cellular stress and efficacy of etoposide (Figure 2).
- Fluorescent tagging of the 3’ ends of the DNA fragments confirmed apoptosis (Figure 3).
- This evidence supports etoposide’s efficacy in inducing apoptosis in IMR-32 cells.
- At present, experimentation is being done to evaluate hypothesis #2

References

Acknowledgments

I would like to thank Dr. Charles Walker Ph.D., Cameron Vergato, Hannah Eldred, and Sarah Yunes from the Walker Lab; Dr. Patricia Halpin Ph.D. and Dr. Stephen Pugh Ph.D from the UNH Manchester Biology Program, and the UNH URA grant donors and committee members.

Funding provided by the UNH URA donors and the Walker Lab.