

Disciplinary Core Ideas

LS1.A: Structure and Function

- Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1)
- Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)
- Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)

Life Science – General Biology Kidneys! Need 'em or not?

Science & Engineering Practices

- Asking questions and defining problems in 9-12 builds on K-8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
- Ask questions that arise from examining models or a theory to clarify relationships. (HS-LS3-1)

Analyzing and Interpreting Data

Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

 Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS3-3)

Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. (HS-LS3-2)
- Use mathematical, computational, and/or algorithmic representations of phenomena or design solutions to describe and/or support claims and/or explanations

- Critically read scientific literature adapted for classroom use to determine the central ideas or conclusions and/or to obtain scientific and/or technical information to summarize complex evidence, concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.
- Compare, integrate and evaluate sources of information presented in different media or formats (e.g., visually, quantitatively) as well as in words in order to address a scientific question or solve a problem. Gather, read, and evaluate scientific and/or technical information from multiple authoritative sources, assessing the evidence and usefulness of each source.
- Evaluate the validity and reliability of and/or synthesize multiple claims, methods, and/or designs that appear in scientific and technical texts or media reports, verifying the data when possible.
- Communicate scientific and/or technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (i.e., orally, graphically, textually, mathematically).

Questions	Phenomena	Science & Engineering Practices	Activity	Learning Targets/ Figuring out
#1 Kidneys, Need 'em or not?	Selena Gomez Kidney Story – video https://www.youtu be.com/watch?v=3 HaqZjj0qvY and/or Diary of a Dialysis Kid-video Diary of a Dialysis Kid - Medium.m4v	Asking Questions & Defining Problems	Students watch one or two videos and ponder what they know and wonder about kidneys and their importance. Students record their questions and wonderings on post-it notes to develop a Driving Question Board. Students in small groups create initial models of how kidneys function in the body. Use a diamond pattern on whiteboard to encourage all students to draw their model before developing a small group model where they can agree.	Students raise questions and wonderings about the importance of kidneys in humans. They may use the term homeostasis and should be coached to develop a working definition for the class. Look for student ideas around interactions with other systems: circulatory, nervous, respiratory, immune systems, etc. Encourage them to define interactions and functions as deeply as possible. This will help them in the culminating argument challenge. Students work in small groups to create an initial model that describes their understanding of the role and functioning of kidneys (formative assessment opportunity for teachers to learn what students already know or think they know). Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1) Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2) Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range

#2		Asking	Students work in	Students refine their understanding of
		Questions	teams to test out 2	how kidneys work in maintaining body
How do		& Defining	different scenarios	functioning or homeostasis (big picture
kidnevs		Problems	and use additional	understanding: not little narts)
work2		TTODICITIS	rosourcos (toxt	understanding, not ittle partsj.
WOIK:			YeuTube Videos er	The teacher chould exchestrate a public
	Going deeper into		YouTube videos, or	The teacher should orchestrate a public
	the role of kidneys		teacher-directed	viewing of the adjusted models
	and	Developing	descriptions) to figure	accomplished by the small groups (Gallery
	anu	& Using	out how kidneys filter	Walk). Then use the ideas from the
	semipermeable	Models	the blood.	smaller groups to help build a class
	mempranes.			consensus model about how kidneys work
			Remote access to	to maintain the body. Building a
	Option 1:		dialysis tubing might	consensus model should always include
		Revising	be difficult: this video	ideas with explicit evidence, which is a
	Start with <u>osmosis</u>	Models	can beln	perfect opportunity to advance students'
	activity using a	Widdels	cannelp	listoning and communication skills. Please
	semipermeable	Evalenation	Small groups improve	visit the Dreductive Telly recourses
	membrane (dialysis	Explanation	Small groups improve	visit the <u>productive raik resources</u> .
	tubing).	_	their models of the	
	then a classroom	Argument	kidney as part of	The teacher introduces the <u>Summary</u>
	or a web-based	with	multiple body	Table as a record of learning experiences
	or a web-based	Evidence	systems.	and the questions answered as well as
	simulation.			new ones that come up. We find that
			How does the kidney	students engage in more emotional and
	Then use		works in the body and	ethical concerns about organ loss and
	https://eaglesoftw		why it is so critical in	access to treatment or transplants
	orks.github.io/Diff		maintaining	decess to treatment of transplants.
	<u>usion/</u> to		homoostasis2	Assossment: Why is a urine sample
	encourage		nomeostasis:	Assessment. Why is a unite sample
	students testing		¥ A I I' I	required for an annual physical to judge
	out a simulation.		*Additional activities	your nealth?
			around kidney	
	OR Option 2:		tunctioning can br	
	Reverse the		found online. <u>Here is</u>	
	nrocess to begin		the original resource	
	with a simulation		for the dialysis lab	
			activity. Be aware that	
	and then the lab		too much information	
	activity.		can muddy the flow of	
			understanding. and	
			consulting the NGSS	
			grade area standards	
			being to reduce	
			vocabulary as well as	
			unnecessary concepts.	

	Initial Video: Meet	Asking		Considering the possibilities of
#3	Blake:	Questions &	The "Meet Blake" video	solving kidney loss?
	https://serpmedia.o	Defining	provides another look at	
Are trans-	rg/scigen/l6.6a.html	Problems	a successful transplant.	These videos help to frame the
plants the			The student question	dilemma of kidney loss. At the same
best			asks, "Is a transplant	time, the short article on Mini-
solution?	Sample web-	Revising	better than dialysis?"	Kidneys offers hope for the
	accessible resources	Models as	Students can be asked to	treatment of kidney disease and the
Why not	for students to	Solutions to	vote publicly on whether	potential for the regeneration of
get a new	peruse and cite.	Kidney loss.	they think transplants are	organs.
kidney?	There are hundreds,		better than a mechanical	
	so encourage	Defining	device performing organ	From the homework create a table to
Students	Waitlists &	Problems	functions.	discuss the issues and questions,
can be	Transplants		Students research and	perhaps as an Organ Solutions list
asked to	https://www	Analyzing &	Students research and	with specific evidence gleaned so far
consider	.kidney.org/atoz/con	Interpreting	their view. Students can	as to the pros & cons.
() A ()	tent/transplant-	Data	work in teams during a	
What is	waitlist			Additional ARIVII BIOFab & NGSS
currently	https://www		homework assignment.	Practices videos:
available	<u>.Kidney.org/ato2/con</u>		They can use the	• <u>X-merma - Problem Solving</u>
10 nationts	Transplantation		suggested resources and	*Additional videos available at
patients who have	Transplantation		research additional or	YouTube Chapped PioEab NGSS
failing	•Concorns with		more current articles.	Tourube charmer biorab – NG33
kidnevs?"	rejection		This opens their world to	
Runeys:	immunosunnressant		additional organs, needs,	
	s		and human body	
	https://www.kidney		systems.	
	.org/atoz/content/i			
	mmuno		These videos and the	
			short article could be	
	https://transplantlivi		used in a class jigsaw	
	ng.org/after-the-		where different groups	
	transplant/preventin		see different pieces and	
	g-rejection/side-		extract the new learning	
	effects/		from them to report to	
			others or partially as an	
	https://kidshealth.or		assignment.	
	g/en/teens/kidney-		There are an areiten more than	
	transplant.html		Then as an assignment or	
			"If you were experiencing	
	https://www.urmc.r		kidnov disoaso, what	
	ochester.edu/Media		would you consider as a	
	Libraries/URMCMedi		course of action and	
	a/lite-sciences-		what additional issues or	
	learning-		auestions would you	
	center/documents/T		have?"	
	EACHERRejection7-			
	23-09.pdf			

#4				STEM cells play a very specific role in
		Asking	Personalized	regenerative medicine. Here lies the
		Questions &	medicine is	ability to go deeper into an
Why		Defining	growing by leaps	understanding of STEM cells.
can't we	National Coographia	Problems	and bounds. The	-
just make	National Geographic		ability of	Additional ARMI BioFab & NGSS
our own	documentary: <u>How to</u>		researchers to	Practice videos:
new	Make a Heart Beat.		understand the	• RPT - Argument with Evidence
organs?	intro: 3:28 mins.		characteristics of	
_	Full Epicodo 11:		a condition and	In multicellular organisms, individual
	<u>Full Episode 11.</u> National Coographic		then use that	cells grow and then divide via a process
	National Geographic		understanding to	called mitosis, thereby allowing the
	explores the latest		design treatments	organism to grow. The organism begins
	on the verse of		has grown	as a single cell (fertilized egg) that
	on the verge of		significantly.	divides successively to produce many
	cupply of roplacement		Personalized	cells, with each parent cell passing
	body parts		cellular therapies	identical genetic material (two variants
	body parts.		are in the process	of each chromosome pair) to both
	What is Regenerative		now! Many	daughter cells. Cellular division and
	Medicine?		believe we are in	differentiation produce and maintain a
			"The Biology	complex organism, composed of
	Replacing failing		Century" where	systems of tissues and organs that
	organs!		incredible	work together to meet the needs of
			solutions to long-	the whole organism. (HS-LS1-4)
	Personalized Cellular		experienced	
	Therapies – video of		illnesses and	Cutting-edge science - what is possible
	different types of		diseases will take	at this time?
	stem cells from		place. This lesson	
	conception to adult		moves students to	Keep in mind that new developments
			consider	are taking place every day. This short
	Introduction to		regenerative	(6:38 min) video presents a basic story
	Regenerative		medicine as the	about the advancement from the use
	<u>Medicine</u>		wave of the	of embryonic stem cells to the use of
			future!	adult stem cells for regenerative
	How cells become		Dig Kidnovs	medicine and research.
	specialized!		<u>Pig Kiulleys</u>	
				Additional ARMI BioFab & NGSS
	Tissue Regeneration		<u>Human m</u> Milostopo	Practice videos:
	in Animals		<u>Ivillestone</u> Experiment:	DEKA - Communication
			Experiment: Exports prodict	 <u>Cellink - Explanation</u>
	Scientists Successfully		that	
	Grow a Full-Sized		"venotransplants"	Have students consider "Are kidneys
	Beating Heart Using		may become a	the only organs important to life?" in
	Stem Cells		viable ontion	preparation for going beyond kidneys?
			within the next	
			decade	

#5		Argument from	Sophomore level	Students learn about multiple organs,
	In small groups,	Evidence	"Gen Biology"	areas of research, and to prepare
The	students use data and		students are	arguments considering the science and
Challenge	their understanding of	Explanation	learning to drive	the socio-ethical-economic decisions to
_	various organs.	-	(asked to become	be made. As possible, push for
If you had	systems, and	Data Analysis &	organ donors),	statistical analyses and offer a variety
\$100	homeostasis to	Computation	learning to write	of media for the public (class)
million to	advance an argument	•	persuasively (ELA),	presentations. If time allows students
advance	for research around a	Communication	and this project	can debate the importance of the
regenerati	narticular organ		will engage them	research for particular organs. For
ve	pur ticular organi		in many ways.	example. "Are kidneys more important
medicine.	Student teams might		- , -,-	than hearts? Why?"
which	randomly select an		Student teams	
organ	organ (heart, liver,		prepare	SEP:
research	kidney, lung, etc.) to		arguments (pitch -	· Critically read scientific literature
area	make a pitch, or		persuasive	adapted for classroom use to
would vou	better, use student		writing) and use	determine the central ideas or
invest in	interests to organize		their accumulated	conclusions and/or to obtain scientific
and why?	teams around specific		background	and/or technical information to
	organs.		knowledge of	summarize complex evidence,
			organ	concepts, processes, or information
	Potential Resources:		growth/repair/ne	presented in a text by paraphrasing
			ed to develop an	them in simpler but still accurate
	U.S. Dept of Health &		argument and	terms.
	Human Services -		make a case for	\cdot Compare, integrate and evaluate
	Organ Procurement		the monies to be	sources of information presented in
	and Transplantation		directed to their	different media or formats (e.g.,
	Network		area of concern.	visually, quantitatively) as well as in
				words in order to address a scientific
			Push for both	question or solve a problem.
	This is a type of		quantitative and	• Gather, read, and evaluate scientific
	onginooring		qualitative	and/or technical information from
	challongo as students		arguments!	multiple authoritative sources,
	are asked to prepare			assessing the evidence and usefulness
	their arguments		Student teams	of each source.
	ontimizing henefits		debate most	\cdot Evaluate the validity and reliability
	and considering risks		viable options for	of and/or synthesize multiple claims,
	You can use questions		research	methods, and/or designs that appear
	and wonderings from		investment.	in scientific and technical texts or
	the Driving Question			media reports, verifying the data when
	Board or Summary		Present their	possible.
	Table to help students		arguments to the	Communicate scientific and/or
	take a deep dive into		class for class	technical information or ideas (e.g.
	organ needs. viability		decision.	about phenomena and/or the process
	research progress.			of development and the design and
	ethics, accessibility.			performance of a proposed process or
	and economics.			system) in multiple formats (i.e.,
				orally, graphically, textually,
				mathematically).

Assessme nt Which organ is most needed for the research to advance?	Reviewing the Summary Table and learning from the arguments presented by the other teams, individual students choose the organ they believe is most deserving and communicate that with explicit evidence as to why that organ's research should be supported.	Argument with Evidence	A final summary review reflecting back on the question "Kidneys, Need 'em or Not?" and questions that still need to be answered (science continues).	Reflection on learning can take many forms, but using a Summary Table to organize learning benefits students and teachers. Teachers may contemplate changes in how they used this storyline and involve new resources discovered by students and/or adjust the order of the lessons.
---	---	---------------------------	---	---

*Please note that every day, new videos and research info are broadcast on the web. Involving students in the search for current information that is valid, is an important 21st century skill they will need. As a facilitator of learning, you might make suggestions, but promoting active student research for cutting edge developments empowers students in their learning!

Be sure to check out the Example Summary Chart, the Employable Skills aligned with the Science and Engineering Practices, and the STEM Teaching Tools!

Here's an overview of the BioFab project your students might find interesting:

Introduction and Overview of BioFabUSA