Skip to main content
University of New Hampshire
  • Apply
  • Contact
  • Maps & Directions
  • Storm
  • myCourses
  • Give
  • A-Z
  • Social UNH
≡

Inquiry Journal

  • Home
  • UNH Home
  • Search

Search form

  • Home
  • About Inquiry
    • Contact Us
  • Spring 2022 Issue
    • Abstracts
    • Feature Article
    • Research Articles
    • Commentaries
    • Mentor Highlights
    • Editorial Staff
  • Fall 2022 Issue
  • Archive
  • Get Involved
    • Submissions
    • Categories of Manuscripts
    • Editorial and Revision Process
    • Writing Guidelines
    • Documentation and Images
    • Join the Staff
    • Publication Agreement
    • Responses to Inquiry
  • Related Interests

Undergraduate Research Journal : Spring 2019

  • Home
  • Menu

Spring 2019 Home

  • Abstracts
  • Research Articles
  • Commentaries
  • Mentor Highlights
  • Editorial Staff

Investigating the Dark Sector: Attempting to Resolve the Hubble Tension with a Modified Model of the Universe

Abstract

Investigating the Dark Sector: Attempting to Resolve the Hubble Tension with a Modified Model of the Universe

—Emma Clarke

The standard model of Big Bang cosmology is the ΛCDM model, which incorporates cold dark matter and dark energy, two mysterious components of what is known as the “dark sector” of the universe, or sector not directly observable with light. Observations of primordial light in the universe allow precision tests of cosmological models, including the expansion rate of the universe, also known as the Hubble constant. Values of the Hubble constant determined using observations of primordial light and the ΛCDM model are in disagreement with the value determined from local observables, such as the recession velocities of galaxies observable with satellites. This tension may indicate a need to move beyond standard ΛCDM. During my International Research Opportunities Program (IROP) research at the Indian Institute of Astrophysics in Bangalore, India, I studied a possible extension of the ΛCDM model in which cold dark matter decays into dark radiation. In this project I investigated the effects of decaying dark matter on cosmological observables such as the Hubble constant. My results show that the decaying dark matter model may help alleviate tension between the indirect and direct determinations of the Hubble constant.

 
Read full article »

The University of New Hampshire  •  Copyright © 2023
Main Street, Durham, NH 03824  •  603-862-1234
400 Commercial Street, Manchester, NH  •  603-641-4101

USNH Privacy Policies  •  USNH Terms of Use  •  ADA Acknowledgement  •  Contact the Webmaster