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Topic 1: Introduction to the Principles of Experimental Design 
Supplementary Reading 
 
 

"The purpose of statistical science is to provide an objective basis for the analysis 
of problems in which the data depart from the laws of exact causality. " 

D. J. Finney, 
An Introduction to Statistical Science in Agriculture 

 
1.1 Types of reasoning 
 
 Two types of inferences are commonly used to derive a scientific conclusion, namely, 
deductive inference and inductive inference 
 
Deductive  reasoning 
 Deductive reasoning is reasoning from the general to the specific. It is what we 
colloquially think of as "logic". A deductive inference is a judgment or generalization based on 
axioms or assumptions. For example, if two coins are assumed perfectly balanced then one can 
conclude that the mean number of heads of tossing these two coins must be one. The deductive 
generalization is correct only if the assumptions are correct. 
 
Inductive reasoning 

Inductive reasoning, as the term is used by statisticians, means reasoning from the 
particular to the general. In the example of two coins, a conclusion about the mean number of 
heads will be based on the actual results of a number of trials. Experiments are conducted to 
provide specific facts from which general conclusions are established and thus involve inductive 
reasoning. Here is a slightly humorous inductive "argument" that all odd numbers are prime 
numbers: 1 is a prime, 3 is a prime, 5 is a prime, 7 is a prime, (there are some problems with 9 
that seem to be due to temperature effects), 11 is a prime, and 13 is a prime; therefore all odd 
numbers are prime. From this example, it is clear that inductive reasoning does not always 
produce valid conclusions. It is, however, the source of almost all advances in science, since its 
intelligent use allows one to use observations to motivate the formulation of new scientific 
theories. 
 
1.2 The scientific method 

 
The power of inductive reasoning is that it permits us to formulate general theories about 

the world based on particular observations of the behavior of the world. The problem with 
inductive reasoning is that these theories are often wrong. The "scientific method" is a formal 
statement of procedure designed to facilitate the scientist's making the most effective use of his 
or her observations. The scientific method is usually defined to consist of the following four 
steps (Little and Hills, 1978): 
 
 Formulation of the hypothesis. Based on preliminary observations, this is the tentative 

explanation. 



 

 2 

 Planning the experiment. The experiment must be constructed to objectively test the 
hypothesis. This is what this course is all about. 

 Careful observation and collection of the data 
 Interpretation of the results. The results of the experiment may lead to confirmation, 

alteration, or rejection of the hypothesis. 
 
Some important characteristics of a well-planned experiment are (Cox 1958): 

 
1. Degree of precision. The probability should be high that the experiment will be able to 

measure differences with the degree of precision the experimenter desires. This implies an 
appropriate design and sufficient replication. 

2. Simplicity. The design should be as simple as possible, consistent with the objectives of the 
experiment. 

3. Absence of systematic error. Experimental units receiving one treatment should not differ 
in any systematic way from those receiving another treatment so that an unbiased estimate 
of each treatment effect can be obtained. 

4. Range of validity of conclusions. Conclusions should have as wide a range of validity as 
possible. An experiment replicated in time and space would increase the range of validity 
of the conclusions that could be drawn from it. A factorial set of treatments is another way 
of increasing the range of validity of an experiment. 

5. Calculation of degree of uncertainty. The experiment  should be designed so that it is 
possible to calculate the possibility of obtaining the observed result by chance alone. 

 
 
Steps in experimentation (Little and Hills 1978): 
 
Define the problem 
Determine the objectives 
Select the treatments 
Select the experimental material 
Select the experimental design 
Select the experimental unit and number of replications 
Ensure proper randomization and layout 
Ensure proper means of data collection 
Outline the statistical analysis before doing the experiment 
Conduct the experiment 
Analyze the data and interpret the results 
Prepare complete and readable reports 
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1.3  Experimental design 
 
1.3.1  The role of experimental design 

 
Experimental design concerns the validity and efficiency of the experiment. The 

experimental design in the following diagram (Box et al., 1978) is represented by a movable 
window through which certain aspects of the true state of nature, more or less distorted by noise, 
may be observed. The position and size of the window depend on the questions being asked and 
the quality of the experiment. A poor design may not generate any useful information for 
meaningful analysis. A well designed experiment can provide factual evidence which can easily 
be analyzed and understood by the researcher (and his or her broader research community). 

 
Methods of experimental design are at least as important as 

methods of data analysis in a research program. 
  
The diagram emphasizes that, although the conjectured state of nature may be false or at least 
inexact, the data themselves are generated by the true state of nature. This is the reason why the 
process of continually updating the hypothesis and comparing the deduced states of nature with 
actual data can lead to convergence on robust insights. 

 
Role of experimental design 
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A complete scientific research process therefore includes two concurrent and parallel 
approaches: theoretical and experimental. Statistics offers a powerful tool to help researchers to 
conduct experiments and analyze data. These two approaches must be integrated to gain 
knowledge of the phenomenon.  

 

 
 

Simple example of the process of research 
 
 
A designed experiment must satisfy all requirements of the objectives of a study but is 

also subject to the limitations of available resources. Below we will give examples of how the 
objective and hypothesis of a study influences the design of an experiment. 

 
1.3.2  Objectives and experimental design 

 
First, the type of an experiment depends on the objective. This point may be illustrated by 

the following examples: 
 
 a)  In plant breeding variety trials, the objectives of a screening trial and a critical 

evaluation trial can be very different. In a screening trial (exploratory type of study), one would 
like to compare as many entries as possible even at some expense of precision, that is, at a 
reduced number of replications. On the other hand, in a rigorous variety trial the entries can be 
few, but high precision must be maintained so that the differences among the varieties can be 
compared with a high level of confidence. 



 

 5 

 
b)  Environmental studies can be classified into baseline, monitoring, or impact studies 

according to their objectives. Baseline studies are used to establish the “normal environment.”  
Monitoring studies are used for detecting changes, and impact studies are designed to relate 
environmental changes to certain specific impact factors. 

 
For example, in evaluating the environmental impact of the application of an herbicide, 

periodical soil samples may have to be taken from farms with herbicide application and farms 
without the herbicide application, and from farms before and after the application. Thus, in an 
impact study, two controls, spatial and temporal, are need to have an optimal impact design. An 
area-by-time factorial design provides evidence for impact effects in a significant area-by-time 
interaction. 

 
Second, the scope of the experiment is also defined by the objectives. For instance, a 

comparison of several varieties in several years, but in only one location, does not permit the 
researcher to make inferences about their behavior in other environments. Thus, how far and to 
what populations the inferences can be extended depends on the scope of the study, which is 
determined in turn by the objectives of the study. 
 
 
1.4  Hypotheses and experimental design 

 
1.4.1  Concepts about hypotheses 

 
Curiosity leads to investigational questions that can be posed in the form of hypotheses. 

statements that are testable and falsifiable. 
 

Hypotheses must be falsifiable 
 
Hypothesis formulation is a prerequisite to the application of statistical design and 

analysis. A null hypothesis (H0) can never be proved correct, but it can be rejected with known 
risks of being wrong, i.e. falsifiable. (Thus, for example, a chemical can never be proven to be 
perfectly safe.) 

 
Example: If H0 says that late-maturing cultivars have the same yields as early-maturing 

cultivars, then you must reject H0 if an increased yield of late cultivars was observed in the 
experiment. You can’t then say, “come to think of it, these differences may be due to different 
environments where they were grown, not really the cultivar differences.”  If a result can be 
interpreted in that way, then the hypothesis was unfalsifiable. This can result only from a poor 
experimental design. 

 
A hypothesis can be expressed as a model. All models are abstractions and 

simplifications or approximations of reality but not the reality itself. In biological or 
environmental studies, a model that closely approximates a complex real system would need 
hundreds of simultaneous partial differential equations with time lags and hundreds of 
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parameters. Simplification is both legitimate and necessary. Thus, all models may be considered 
as hypotheses that can be further improved or refined by experimental work. 

 
Initially, a proposed hypothesis can be considered an assumption which can only be 

tested by comparing the predicted results of the assumption with the experimental data. An initial 
hypothesis is sometimes referred to as a research hypothesis (RH), and the predicted result as 
the test consequence (TC). Many alternative TCs can be deducted from an RH, and each TC can 
be tested by a specifically designed experiment. Therefore, it is important to select a TC so that 
the RH can be most efficiently and correctly tested by experiment. The method of deriving TC 
from RH is called the hypothetical-deductive (HD) method. A poorly derived TC leads to 
inefficient experiments, or possibly nonfalsifiable RH. In general, a TC is stated in a form of a 
statistical hypothesis so that statistically sound methods can be applied to test the TC. Since a TC 
dictates the objective, type, and scope of an experiment, as well as potential errors of conclusions 
of analysis, it is extremely important for experimenters to formulate well thought out and the best 
possible TC from an RH. 

 
1.4.2  Significance level of testing a hypothesis 

 
Significance level is the probability that one rejects H0 when it is in fact true. Of course, 

this is an incorrect decision that should be kept as small as possible. Conventionally, this is kept 
less than 0.05 (alpha). 

 
If the H0 “increased ozone levels have no effect on yield” is tested at a=0 .05 or 5%, then 

a significant result means there is less than a 1-in-20 chance that the observed yield reduction 
would have occurred independent of ozone damage and that one out of 20 or more times is an 
acceptable low risk of being wrong in the conclusion that ozone damage affects crop yield. 
Importantly, the probability of detecting a difference depends on the true magnitude of the 
difference. 

 
So why not simply choose a lower Type I error rate?  Lowering alpha will increase Type 

II error, beta, which is the probability of concluding that H0 is true when in fact it is not. There is 
always a tradeoff, and the only way to reduce one error without increasing the other is to 
improve the design. For example, one could increase the number of samples to reduce either 
error, or both. 

 
Sometimes a significant biological difference between treatments is not statistically 

significant. This problem is due to inadequate design. On the other hand, statistical significance 
may not be biologically significant. Sometimes too many measurements are made without real 
purpose, and the chance of a non-real biological difference being declared significant statistically 
is greatly increased. With a 5% alpha and 200 comparisons one can obtain about 10 false 
significances. Thus, it is important to define “biological significance;” then experiments can be 
designed to detect this amount, no more and no less. 
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1.5  Specific issues of experimental design 
 
Once the objectives, interesting questions, and the hypothesis are defined, the scope, 

type, and requirements of an experiment are also more or less determined. Thus, the experiment 
should be designed to meet those requirements. Specifically, experimental design is concerned 
with the following issues: 

 
The size of the study: number of replications, and the size and shape of experimental units. 
 
Type and number of measurements: availability of a measuring device, precision and accuracy of 

the measurement, and the timing of making measurements. 
 
Treatments: the type of treatments, the levels of treatment, and the number of treatments. 
 
Assignment of treatments to experimental units: completely random, restricted randomization, 

etc. 
 
Error control: the error control can be accomplished by blocking techniques, the use of 

concomitant observations, the choice of size and shape of the experimental units, and the 
control of the environment using a growth chamber or greenhouse. 

 
Relative precision of designs involving few treatments: to compare the information content of 
two experimental designs 
 
 Among the above considerations, replication and randomization are the most important 
basic principles in designing experiments.  
 
1.5.1  Replication 
 
1.5.1.1  Functions of replication 
• To provide an estimate of the experimental error. The experimental error is the variation 

which exists among observations on experimental units treated alike. When there is no 
method of estimating experimental error, there is no way to determine whether observed 
differences indicate real differences or are due to inherent variation. 

• To improve the precision of an experiment by reducing the standard deviation of a 
treatment mean. Increased replication usually improves precision, decreasing the lengths 
of confidence intervals and increasing the power of statistical tests. 

• To increase the scope of inference of the experiment by selection and appropriate use of 
more variable experimental units. Example: replication in time and space in yield trials.  

• To effect control of the error variance. The aim is to assign the total variation among 
experimental units so that it is maximized among groups and, simultaneously, minimized 
within. Experimental error must not be inflated by differences among groups. 
 

1.5.1.2  Distinguishing between replications and subsamples 
Replication refers to the number of experimental units that are treated alike (experimental 

unit or experimental plot is the unit of material to which one application of a treatment is 
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applied). Misconception of number of replications has often occurred in experiments where 
subsamples or repeated observations on some unit were mistaken as experimental units. Hurlbert 
(1984) reported that pseudoreplication occurred in 27% of the studies published in ecology 
journals since 1960. A 1982 survey of articles in plant pathology journals showed no true 
replications in 19% of papers on phytopathology and 37% of the papers on plant disease. 
Without proper replication, no valid scientific conclusion can be drawn from such a study. 

 
There are two important points to remember in determining what constitutes a 

replication. 
(1)  Each replication must be independent of every other. 
(2)  Each replication must be part of a randomized trial; that is, any one plot must have 

the same chance of getting each treatment. 
 
Example: Field trial. We want to compare 3 fertilizer treatments, denoted A, B, and C. 

Except as discussed in Case 4, the field is an ordinary one, and assumed uniform. The crop is an 
annual. 

 
1 2 3 
4 5 6 
7 8 9 
10 11 12 

 
Case 1 

4 plots are selected at random for each fertilizer. This is done by moving through a table 
of random numbers. The first 4 between 1 and 12 selected are assigned to treatment 1, the next 4 
to treatment 2, and the last 4 to treatment 3. This is a completely randomized design. There are 4 
replications for each treatment. If the experiment is run in succeeding years then each year 
provides a different set of replications. 
Case 2 

Same as case 1 except the crop is a perennial. In this case the succeeding years are not 
replications. The fact that the crop is a perennial violates the independence requirement above. 
This is a repeated measures experiment. 
Case 3 

Same as case 1 except each of the 12 plots are further divided into three subplots. These 
subplots are not replications, they are subsamples. The randomization requirement above is 
violated. 
 
Case 4 

The numbers 1, 2, and 3 are arranged in a random order. Each treatment is applied to all 
plots in the column containing the randomly selected number (e.g. treatment 1 is applied to plots 
2, 5, 8, and 11, etc.). In this case there is no replication for the treatment. The separate plots 
within a column are subsamples. 
 
 The definition of replication can have an even broader meaning. For instance, in a 
breeding program of yield trials, varieties are frequently compared in a number of locations and 
years. In this case, the varieties are treatments and the experimental units are plots in location 
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and year. Over the years, these plots may not be the same spots in locations, or not even in the 
same locations. The point here is that sometimes the locations and years may also be considered 
as replications so as to enable us to examine the consistency of the varietal yield performance. 
However, it should be noted that sometimes the locations may be of special interest and these are 
considered as treatments rather than replications. 
 
1.5.2  Types and number of measurements 
 
Type: practical and theoretical considerations 
 
 Practical considerations are the availability of the measuring device and the costs.  
Sometimes indirect measurement is much cheaper than direct measurement. For example, it may 
be very expensive to measure herbicide residues in the soil by taking soil samples and analyzing 
them chemically. Instead we may select an indicator plant and use a bioassay to measure the 
amount of residue indirectly from the plant response. At times it is not practical to make an 
observation on the complete experimental unit and the unit is sampled. 

 
From a theoretical point of view, it is necessary to establish the reliability of the 

measurements, i.e. their precision and accuracy. Precision has to do with the concept of random 
errors and the precision of an average can always be improved by increasing the sample size. 
Precision, sensitivity, or amount of information is measured as the reciprocal of the variance of 
the means. If we let   represent the amount of information contained in a sample mean, then: 

 

 

 
Thus the amount of information per observation is: 
 

 

 
If  is used to estimate there is a correction to this formula: 
 

 

 
Note that when n à ¥, then the correction factor (df+1)/(df+3) à 1. 
 

Accuracy is associated with the concept of bias or systematic errors. It is caused by the 
procedure of taking the measurement or the device itself. The next figure shows the differences 
between accuracy and precision. 
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Figure 4. Accuracy and precision 
 
 

Number of measurements 
 
Sometimes, researchers collect too many variables and unnecessarily complicate the 

experiment. Example: in a clinical study, several systems, such as lymphoreticula system, 
pulmonary system, gastrointestinal system and cardiovascular system are examined in addition to 
chemical and enzymatic analyses of blood and urine samples. As a result, it is very difficult to 
perform a meaningful data analysis. 

 
 If subsampling is used, there is little point in making a large number of determinations in 
each experimental unit since experimental error must be based on variation among experimental 
units, not on variation among samples from within the experimental units. 

 
Types and levels of treatments 
 
 For most experimental designs, it is assumed that the observation obtained when a 
particular treatment is applied to a particular experimental unit is: 
 

(a quantity depending only on the unit) + (a quantity depending on the treatment) 
 
The essential points about this assumption are that  
 
a) the treatment term adds on to the unit term rather than for example, multiplying 
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b) the treatment effects are constant 
c) the observation on one unit is unaffected by the treatment applied to other units (no carry-
over) 
 
 A particular type of treatment is the control, included in many situations as a standard to 
check the effect of other treatments. 
 
 The type and number of treatment levels are important considerations, particularly when 
the treatments are quantitative. Choice of the number of levels and their spacing is important to 
determine the nature of the response (for example linear or curvilinear response). 
   
1.5.3  Assignment of treatments to experimental units 

 
Treatments are generally randomly assigned to experimental units. The function of 

randomization is to ensure that we have a valid estimate of experimental error and of treatments 
means and differences among them. Randomization avoids possible bias on the part of the 
experimenter, thereby increasing the accuracy of the estimation and guarantees that, on average, 
errors will be independently distributed. Randomization tends to destroy the correlation among 
errors and make valid the usual tests of significance. Putting samples in “representative or 
typical” places is not random sampling. 

Under special circumstances, systematic assignments may be applicable, but we are not 
going to study them in this course. 
 
1.5.4  Error control 
 Control of experimental error through experimental design consists of designing an 
experiment so that some of the natural variation among the set of experimental units is handled  
so as to contribute nothing to differences among treatment means. 
 Sometimes covariates are used to adjust environmental differences. The precision can be 
increased by the use of accessory observations and the analysis of covariance. 
 In field plot experiments, the size and shape of the experimental unit and the block are 
important in relation to precision. Uniformity trials have shown that the individual plot should be 
relatively long and narrow for greatest precision. Blocks should be approximately square to 
maximize variation among blocks. In fields with definite gradients the most precision is obtained 
when the long sides of the plots are parallel to the direction of the gradient.  

Depending on the purpose, a study will require different level of environmental control, 
i.e., growth chambers or greenhouses. 
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1.5.5  Relative precision of designs involving few treatments 
  
As said before, the information provided by a single, independent observation is: 
 

 

 
And when the true variance is unknown, a correction factor is needed: 
 

 

 
Building on this concept, the amount of information provided by each experimental unit (i.e. 
independent observation) in a given experiment is: 
 

 

 
where MSE is the error mean square of the experiment and dfe is the error degrees of freedom for 
the experiment. The number of degrees of freedom affects the estimation of s2 and therefore the 
estimation of information. The error degrees of freedom depend on the number of replicates, 
number of treatments, etc. (i.e. the experimental design). 
 The relative efficiency  of  design 1 relative to design 2 is calculated as the ratio of the 
amount of information in the two designs. If MSE1 and MSE2 are the error mean squares of the 
first and second designs, and dfe1 and dfe2 are their respective error degrees of freedom, the 
relative efficiency of design 1 relative to design 2 is the ratio between the amount of information 
in design1 to that in design 2 (after the manipulation of the equation the error mean square of 
design 1 is in the denominator): 
 

 

 
If this ratio is >1, design 1 provides more information and is more efficient. 
 
If dfe1 = dfe2, this equation simplifies: 
  

 
 

  

2
1
s

=I

2
1

)3(
)1(
sdf

dfI
+
+

=

MSEdf
df

I
e

e 1
)3(
)1(

+
+

=

112

221

22

2

11

1

3)1)((
3)1)((

3)(
1)(

3)(
1)(

2

1
21RE MSEdfdf

MSEdfedf

MSEdf
df

MSEdf
df

to ee

e

e

e

e

e

I
I

++
++

+
+

+
+

===

1

2

21RE MSE
MSE

to =



 

 13 

Review of basic material 
 
Terminology 
 
Treatment (also level or treatment level): A dosage or method to be tested in an experiment 
 
Plot (also sampling unit, experimental unit, or individual): An experimental unit to which a 

treatment is applied, The unit where measurements are made. Examples: If the experimental 
unit is a field and the measurement is total yield then the sample unit is the experimental unit. 
If the measurement is yield per plant then the sample unit is a single plant. 

 
Replication: When a treatment appears more than once in an experiment, it is said to be 

replicated. 
 
Subsample: A measurement not including the whole experimental unit. For example, if there are 

four plants to a pot, and the pot is the experimental unit, and each plant is recorded 
individually, then the individual plants are subsamples. 

 
Repeated measurement: The measurement of the experimental unit more than once. For example, 

if there are four plants to a pot, and the pot is the experimental unit, and pooled data from all 
four plants are recorded on each day for a week, then each individual measurement is part of 
a set of repeated measurements. 

 
Variable: A measurable characteristic of a plot 
 
Population: The set of all possible values of a variable. 
 
Observation (also variate): An individual measurement of a variable 
 
Sample: A set of measurements that constitutes part of a population 
 
Random sample: A sample in which each member of the population has the same chance of 

being included. Note that a random sample is NOT the same as a haphazard sample. 
 
Parameter: A fixed value that characterizes a population 
 
Statistic: The value of a parameter as applied to a sample 
 

 
See notes from the first lecture for basic formulas (mean, variance, etc.). 

 
 Graphic representations of the means of samples often indicate sample variation by a 
simple method. The method of boxplots is quite common. The sample is represented as a box 
whose top and bottom are drawn at the lower and upper quartiles (the length of the box is the 
interquartile range). The box is divided at the median. A vertical line ('whisker') is drawn from 
the top of the box to the largest observation within 1.5 interquartile ranges of the top. A 
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comparable line is drawn from the bottom to the smallest observation within 1.5 interquartile 
ranges of the bottom. All observations beyond these limits (outlier) are plotted individually. The 
great utility of boxplots is that they furnish measures of location (median) dispersion (box and 
whiskers length), skewness (asymmetry of the upper and lower portions of the box, whiskers and 
outliers). Boxplots are also useful to visually compare two or more samples. 
 
Degrees of freedom 

The reason that the quantity ‘n-1’ is used in the denominator of the sample variance 
rather than ‘n’ is that the quantity 

 
∑ (𝑌$ − 𝑌&)()
$*+

𝑛
 

 
is a biased estimator for s2. To say that a statistic is an unbiased estimator of a parameter means 
that if sets of variates are repeatedly drawn from a population and used to compute the statistic, 
then the expected value of all these computed statistics is the value of the parameter. For 
example, the sample variance s2 defined above is an unbiased estimator of the population 
variance s2. That is, if a very large (infinite) set of samples of n variates each are drawn from the 
population of N measurements and the sample variance s2 is computed for each of these, and the 
average E{s2} of all of these sample variances is computed, then E{s2} = s2. If you look at the 
mathematical proof of this, you will find that it hinges on the observation that the sum of the n 
individual deviations (𝑌$ − 𝑌&), which are used to compute s2, must be zero. This is called a 
linear constraint on these quantities.  

Any set of n quantities that do not need to satisfy any such constraints is said to have n 
degrees of freedom. Each constraint that a set of quantities must satisfy removes one degree of 
freedom. Thus, the set of n values Yi has n degrees of freedom and the set of n deviations (𝑌$ −
𝑌&) has n-1 degrees of freedom. In ANOVA, the number of degrees of freedom can be interpreted 
as the number of independent comparisons that can be made among means in an experiment. 
Any constraint that the means must satisfy removes one degree of freedom. 

 
 

Probability distributions and random variables 
 
Populations, samples, and observations come from the real world of experiments. 

Probability distributions and random variables come from the imaginary world of mathematics.  
 
Binomial distribution 
 In a binomial trial, there are only two possible outcomes. Trials are independent and the 
probability of occurrence of a certain event remains constant from trial to trial. The mean and 
variance of a binomial distribution are given by: 
 
Mean µ= np 
 
Variance  s2= np(1-p) 
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The normal distribution 
 
The following conditions tend to result in a normal frequency distribution of a character: 

1) if there are many factors afecting the character 2) if these factors are independent 3) if there 
effects are additive and 4) if they make equal contributions to the variance. It is therefore not 
surprising that many biological variables are approximately normally distributed. 

 
Formally, the normal probability density function can be represented by the expression 
 

                           

 
where Z indicates the height of the ordinate of the curve, which represents the density of the 
items. A normal probability density function has two parameters: the parametric mean µ and the  
parametric standard deviation s, which determine the location and shape of the distribution. A 
normal distribution with mean µ and variance s2  is written in mathematical shorthand as 
Y ~ N(µ, s2). The square root of the variance, s, is called the standard deviation. Rather than Y, 
it is traditional to use Z to represent a random variable drawn from a standard normal 
distribution. 
 
  The normal curve is bell-shaped and symmetrical around the mean. Therefore the mean, 
median, and mode are all at the same point. Two normal departures from normality are skewness 
(meassured by g1) and kurtosis (measured by g2). 
 

 Skeweed to left             Skeweed to right         Platykurtic                    Leptokurtic  
        g1<0   g1>0   g2<0   g2>0  
 

   
Normal distributions with different means and variances 
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Why is it so important?: The central limit theorem 

 
Consider the coin tossing experiment. The real physical system consists of repeatedly 

tossing a coin and determining whether it is heads or tails. Suppose the coin has probability p 
(say, p = 0.4) of landing heads and a probability q = 1 - p of landing tails. The probability model 
would be the selection of an infinite number of zeroes and ones, with each selection being a 1 
with probability p. Out of the infinite population of values we select a sample of size n (say, 
500). What is the probability that the number of heads will be within a certain range (say, 220 to 
230)?  The exact number can be computed by a complicated formula involving the binomial 
distribution. 

It turns out that because we are dealing with a sum of heads the probability distribution 
of this sum is approximately normally distributed.  
 

As sample size increases, the means of samples drawn from a population of any 
distribution will approach the normal distribution. 

 
 This theorem, when rigorously stated is known as the  central limit theorem. The 
importance of this theorem is that if n is large enough, it permits us to use the normal distribution 
to make statistical inferences about means of populations even though the items are not normally 
distributed. The necessary size of n depends upon the distribution (skewed populations require 
larger samples). 
 Let Y1, Y2, Y3, ... be an infinite sequence of random variables drawn from the same 
distribution, which has mean µ and variance s2. Then if a sample of size r is drawn from this 
sequence (or population),  the expected value of the sum of the variates of this sample is 
obviously rµ and the variance can be shown to be rs2 (review ST&D p. 113-115). As the size n 
approaches infinity, the mean of the samples, becomes normally distributed with mean µ and 
variance s2/r. The last formula makes it clear that the standard deviation of means is a function 
of the standard deviation of the items, as well as of the sample size of the means 
 
The standard error 
 One of the most important quantities in this course is the standard error. Returning to our 
coin tossing experiment, it is obvious that we will get a better estimate of the mean µ if we toss 
the coin 500 times than if we toss it 10. The standard error makes this precise. Suppose we have 
a population with mean µ and variance s2, and that a sample of n observations are drawn from 
this population. The mean of this sample is itself a random variable. By the central limit 
theorem this mean is a member of a normally distributed population of means with mean µ and 
variance s2/n. When working with samples from a population we do not know the parametric 
standard deviation but can only obtain a sample estimate s. Therefore, we usually have to 
estimate the standard deviation of means from a single sample by  . This is the standard 
error, which we will denote . This equation shows one value of a large number of 

replications: a reduction in the standard error. The standard error of the mean is central to 
ANOVA. It is important to realize that the variance, population or sample, of a mean decreases 
inversely as n whereas the standard deviation of a mean decreases inversely as . 
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