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Introduction

The following report was produced based on a grant from the University

of New Hampshire’s Broadband Center of Excellence (BCoE) to the UNH
community seeking ideas on the use of smart sensors to benefit rural or
disadvantaged communities. BCoE provides unbiased information and
demonstrations of broadband for the development of innovative network
application experiments in the education, health, public safety and economic
development sectors to improve citizens’ quality of life. BCoE seeks to attain
affordable broadband available to all people around the world.
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Executive Summary

Vehicular traffic of all kinds is vital in semi-rural

communities such as Durham, NH. While our

community does not have the traffic congestion

of larger cities, our vibrant pedestrian APPLICATIONS
contingent, cars, buses, and maintenance
vehicles are sometimes at odds. The challenges
range from pedestrians in un-signaled
crosswalks between classes to the lack of
parking spaces during maximum demand'. These DATA ANALYSIS
problems are universal throughout the country
and scale to much larger cities.

Smart cities are communities that utilize
information from sensors and sensing systems to
make services more efficient or improve
sustainability. These systems are essentially a
cyber-physical system that acts upon gathered
information that is transmitted through a wired “““““‘
or wireless network'. In this context, we are
interested in deploying a network of sensor
systems throughout UNH and Durham to
improve transportation in our community.

NETWORKING

SENSORS

The goal of this project is to have a positive
impact on the community by improving figure 1: Smart Cities tiers
awareness of parking, decreasing traffic

congestion caused by pedestrians and

researching novel methods to encourage the use of alternative forms of
transportation. The innovation of this project is the synthesis of data analytics from
networked sensors and new forms of displaying information to community members.

There were several outcomes of this project and we achieved many of our goals:

B Developed and deployed two sensor platforms (parking and pedestrian); these
platforms included sensor architecture and devices, connectivity to the
backend, and necessary servers.

B Performed a range of analyses on the collected data that demonstrates the
efficacy of making these measurements. Certain limitations of the sensors did
not enable us to collect sufficient data to build a complete UNH transportation
model.

B Created a platform for displaying transportation information to a motorist
through augmented reality and to understand the impact of using these tools
while driving.

B Brought a multi-disciplinary group of UNH faculty together to work on a Smart
Cities project that lead to the submission of a federally funded research
proposal and connections to local transportation companies and DOTs.



Smart Transportation Systems 2017

Sensor Platforms

The first objective of our project was to develop two sensing platforms for measuring
parking availability in one of the University lots and pedestrian traffic in key crosswalks. The
proposed parking system has a set of solar powered wireless sensors to count the number
of spaces available in a lot and to communicate with a server. The pedestrian sensor
monitors mobile phone emissions as pedestrians walk by the sensors and will similarly store
the data.

Parking Sensor

An ideal solution would require little to no
maintenance for the life of the project and
would be able to be deployed remotely, with
the data accessible in real time, e.g. burying
sensors under every parking space. However,
this effort was outside of the scope of the
project. Instead, we developed a temporary
sensor platform. When considering the
amount and frequency of the data, LoRa
wireless technology was the best fit since it
provides a low power solution that could be
accessed at a long range. The decision to use
LoRa, then drove the processor selection,
which was MultiTech’s mdotii processor.

The main requirement for the sensor platform
was the ability to detect a vehicle passing
through the entrance of the parking lot.
There were a variety of sensors that met this
requirement. Magnetic, infrared, LIDAR and
ultrasonic sensors were explored, and
ultrasonic sensors were deployed.

Initially magnetic sensors seemed to be the
logical choice, however, to detect a vehicle,
the magnetic signature (waveform) had to be
analyzed and compared to a “known” vehicle
magnetic signature.

Without a user actively reading the data, this
analysis required a DSP filter. The DSP filter
would have required more power for
processing than could be afforded on the
project.

Figure 2: Original parking sensor form factor as
deployed in Parking Lot B

Infrared tests showed promise when detecting objects in the lab, however infrared was not
chosen because the sun’s infrared spectrum emission confused the sensor because it is in
the same wavelength as the sensor. LIDAR is more expensive than our solution warranted.

Ultrasonic sensors could accurately detect vehicles up to 10 feet from the sensor platform.
Given that the entrances to the parking lots are large areas of space with cars turning from
various directions, this was the most ideal sensor for the project.
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Block Diagram

NETWORK

SENSORS PROCESSOR W

Figure 3: Block Diagram of Parking Sensor

Each sensor module contains a
single mDot as the processor
handling sensor input and
network connectivity. Two
Ultrasonic range sensors are
connected to the mDot, one
monitoring the inner-side of the
parking lot entrance and another
monitoring the external side.
These transmit ultrasonic pulses
and then receive the pulse back.
Upon reception, they monitor the
time of flight of the waveform.
Knowing the speed of sound, the
distance from the sensor to the
car can be measured. If the
distance measured is within a certain threshold then that sensor has detected a car. If the
other sensor senses a car in the same cycle, the direction of the car can be determined.

Figure 4: Processor module wired to sensors

The sensors used were HC-SRO4 Ultrasonic
sensors. They have four pins, a power and ground
for powering the device, and a trigger and echo
pins. When the trigger pin is sent high the sensor
sends out an ultrasonic pulse that is then received
by the sensor. The echo pin returns a high pulse
that corresponds to an object being in the field of
view of the sensor. The time of flight (difference
between send and receive) of the ultrasonic pulse
is then used to calculate distance. The module
counts vehicles passing by in 15-minute intervals.
People and other passing objects are purposely ignored by distance thresholds and time
constraints on the sensed object, but this is not perfect. When 15 minutes passes the device
uplinks to the LoRa network and transmits a frame with data indicating “Cars In” and “Cars
Out”. The data is then pushed from the Senet network to a server on the UNH campus for
further analysis.

Figure 5: New form factor of the parking
sensor as deployed in Parking Lot A

In addition to sending data up to the network, a downlink can be sent to the device through
the network immediately after an uplink to either reset the device or to have it sleep. The
devices were often told to sleep overnight to save additional power.

These sensors were deployed at the entrances to the A-Lot and B-Lot parking lots on the
UNH campus. For one entrance of B-Lot, due to the large width of the entrance, two sensor
systems were deployed, one on each side of the entrance. Another similarly sized entrance
on the same side of B-Lot could not be instrumented on both sides due to the proximity of
a fire hydrant, and the inability to secure the device in place.
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Location of Parking lot sensors (in yellow)
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Figure 6: Three sensors deployed
in Parking Lot A at the entrances

Figure 7: Four sensors deployed
in Parking Lot B at the entrances

Pedestrian Sensor

Detecting people was a challenging, yet vital, goal in order to make transportation more
efficient and safe. The ability to do this would allow better traffic management and allow
commuters to better plan their drive around densely packed areas. Current solutions for
this problem are expensive, complex and use a lot of power.

The current solutions include computer vision, analyzing WiFi traffic or analyzing cell phone
signals. These can be extremely complex and for this project, consume too much power.
Many highway departments now use Bluetooth signals to analyze car travel times on
roadways. Instead of travel times, counting the amount of Bluetooth devices can be related
to the amount of people in the area. Bluetooth has a small range of around 10 meters so the
count would be relative to that small area.
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One problem with Bluetooth is that not all people carry a Bluetooth device and even when
they do it is not always activated and detectable. Because of this, an experiment had to be
conducted to create a probability model of how many Bluetooth devices there are per
person. These experiments allowed us to correlate the number of devices and the
population in a small area and then accurately predict the population using the data we
previously recorded.

A Raspberry Pi 3 was used as the processor module. The Raspberry Pi has a Bluetooth
module on it with the BlueZ Bluetooth stack that allows the user to control the module. A
python script was written to scan and record the MAC addresses it could detect and get a
count of Bluetooth devices by counting the number of unique addresses. Each MAC
address is guaranteed to be linked to one Bluetooth device.

Block Diagram
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Figure 8: Block Diagram of Parking Sensor
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The experiments were conducted in Durham in front of Thompson Hall at the intersection of
Garrison Ave. and Main St. Every sample taken would count Bluetooth devices in the area
for 30 seconds. During those 30 seconds, the amount of people walking through the area
were being counted. At the end of the experiment, the number of devices was compared to
the actual amount of people so in the future, the prediction of the amount of people in an
area compared to the number of devices can be made with high confidence.

In the future, these devices can be upgraded to move away from an entire Raspberry Pi
using a lower power Bluetooth module instead ,with LoRaWAN to provide access to a
central server at low power and cost. This data can be used to give real time predictions of
population to users in Durham.
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Data Analysis

The purpose of the data analysis is to analyze the base-line and sensor data from the first
objective to reduce the stress level for drivers and pedestrians, but also to help direct the
traffic around the campus in a safer and more efficient way. In the future, the broadcast of
such information through an app or signage requires complete understanding of the current
traffic situation, number of parking spots available all over the campus and highly accurate
predictive models that constantly modify their predictions of availability of spots.

Parking Sensors

The csv file containing time series data points for all days between the third week of
January through the second week of March were loaded into memory in a manner that
allows for detailed analysis for B lot. Measurements were also made for A lot. This process
simply renames columns with intuitive names, creates a date formatted column, numerical
weekday column (i.e. Monday O, ..., Sunday = 6), and parsed time stamps into hourly
columns. The data were 15 minute counts of cars entering in and exiting the lot. Sensors had
a systematic tendency of overestimating cars exiting the lot and underestimating those
coming in the lot. We calibrated sensors for various measurement errors several times, and
there still existed estimation anomalies.

Our sensor platform was not completely stable and led to anomalies that made it difficult to
create a complete transportation model based on the time when each lot was at capacity.
Several methods of detecting anomalies were employed. The first method tried was an
implementation of an Isolation Forest" algorithm. The details of this algorithm are not
discussed as it is beyond the scope of this report. The second method implemented was a
rule based anomaly identifier. The rules rely on grouped averages and standard deviations
to flag a record as anomalous or not. The function is built to flag records as anomalous with
respect to either cars in or cars out. A record is flagged as anomalous if its number of cars
in or out is greater than n standard deviations above the mean of cars in or out grouped by
hour and quarter of the hour.

The third method of anomaly detection was an “out of the ballpark” range of number of
cars in and out. For instance, there were cases where number of cars exiting in an hour
exceeded nine hundred, which is physically impossible and indicates anomalies in sensor
detection of vehicles. However, we present a data set to demonstrate the efficacy of our
sensor platform by analyzing the data from the sensors. The following graphs depict the
number of cars entering and exiting each lot on campus.

Cars Entering Lot A

—onday Tuesday = wednesday = Thursday == Friday
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Cars Exiting Lot A
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Figure 9: 24-hour view of cars entering and exiting Parking Lot A. Each color represents a day during
the week of April 24 — April 28

Cars Entering Lot B
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Figure 10: 24-hour view of cars entering and exiting Parking Lot B. Each color represents a day during
the week of April 24 — April 28



Smart Transportation Systems 2017

One interpretation of the data is that A lot rarely reaches capacity and cars arrive in the
morning and leave in the evening. However, in B lot cars arrive throughout the day and
leave as early as 9AM. This leads us to believe that the lot is full when a car enters, looks for
a parking place, is not successful, and then leaves.

Pedestrian Data

The experiments were conducted in Durham in front of Thompson Hall at the intersection of
Garrison Ave. and Main St. Every sample taken would count devices in the area for 30
seconds. During those 30 seconds, the amount of people walking through the area was
being counted. At the end of the experiment, the number of devices scanned was
compared to the actual amount of people so that in the future, the prediction of the
amount of people in an area compared to the amount of devices can be made with high
confidence.

The raw data over two experiments shows the correlation between the number of devices
detected and the number of people counted.
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Figure 11: Actual Population vs Devices Detected for each Bluetooth Experiment

DEVICES PER PERSON

EXPERIMENT 1 EXPERIMENT 2
Mean 1.86 0.74
Median 1.22 0.66
Standard Deviation 1.61 0.41
Correlation Coefficient 0.49 0.48

Table 1: Statistical analysis of Devices per Person for each Bluetooth Experiment

The data demonstrate a positive correlation of about 1.5 devices per person. We also
analyzed the density of devices per person and found that the distribution is likely
Laplacian distributed. However, a larger study is required to create a better model.
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Density of Devices per Person
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Figure 12: Density of Bluetooth devices per person for each experiment

These experiments proved that Bluetooth can be used to predict the amount of people in
an outdoor area while keeping cost and power required low. Creating a strong probability
model can make these predictions more accurate. These experiments showed that 1.5
devices can be equal to 1 person or 15 devices will be seen for every 10 people. This is the
case 80 percent of the time with a confidence level of 90 percent. More experimentation
can be done to get a higher percentage with a greater confidence bound.

Transportation Augmented Reality

Augmented reality holds the promise of providing relevant information to road users in a
manner that will allow the road users to remain connected to their surroundings. This
connection to their surroundings has multiple benefits. First, for drivers, this approach
should allow them to consume information, such as navigation instructions, while they
retain sufficient attention on the outside world to safely perform the primary task in the
vehicle, which is driving. Second, for passengers (and we will all be passengers in
automated vehicles), the connection to their surroundings means that information can be
displayed in a context-sensitive manner. Context sensitivity in this case means that
information is presented such that it is visible under different road and environmental
conditions, and that the information is closely tied to the physical world that it relates to.

To make augmented reality work in a smart transportation system will require significant
broadband capabilities. Drivers and passengers alike will want to see rapidly changing
visual information that is tied to their physical context. Examples include visual
augmentations of the physical environment for gaming purposes, as well as navigation
instructions that augment physical landmarks with virtual landmarks. Thus, we expect that
augmented reality applications will constitute a significant portion of broadband data
consumption in smart transportation systems.
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To make augmented reality work, we need to answer questions related to in-vehicle human-
computer interaction. What information do drivers and passengers want to consume in
vehicles? How should the information be presented? For example, which virtual objects can
be used as virtual landmarks for navigation applications? And to answer these questions we
need some tools. We feel that one critical tool is to be able to provide accurate data about
where users are looking at any given time as they are using augmented reality.

In work at the Human-Computer Interaction Lab at the University of New Hampshire we
tackled two of the issues mentioned above. First, we explored the question of how drivers
might use augmented reality, and specifically, we wanted to find out if they would use
augmented reality to complete video calls with remote conversants. In a driving simulator-
based experiment we found that one current implementation of augmented reality — the
Microsoft HoloLens augmented reality glasses — might discourage drivers (and possibly
also passengers) from looking at the video of a remote conversant (Figure 13). This is
because HoloLens has a narrow field of view (about 40 degrees wide), which might require
the user to move their head often to see the video.

We are also working on integrating eye tracking with HoloLens, to allow us to precisely
measure users’ gaze angles both in the virtual world of HoloLens and in the real world that
surrounds the user. Preliminary data indicates that we can measure eye gaze location
accurately both for real targets (Figure 14) and for virtual targets.

Figure 13: In a driving simulator-based study we explored the use of HoloLens to
complete video calls between drivers and remote conversants.
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Figure 14: Head-tracking data from HoloLens was integrated with gaze direction data
from a wearable eye tracker. This figure demonstrates that this data can be used to
accurately measure gaze location in the real world for users wearing HoloLens.

Conclusions

In this smart transportation project, we developed and deployed two complete wireless
sensor networks, measured and analyzed two sets of transportation datanand created a
novel augmented reality platform to display information to motorist. Each of these tasks
brought the research group closer together and created a vital data set to apply for future
Smart City research projects.

In addition to the team working together as researchers, other valuable connections and
relationships were developed that will enable future Smart City work on the UNH campus.
These relationships include working with the UNH Transportation and Parking departments,
the UNH-Police department and the Town of Durham Police Department.

Many other tangential items were learned and established that could also enable future
Smart City work. In the research phase of the sensor development, many processor
platforms, sensor types and wireless technologies were explored which will benefit other
projects. A LoRa network has been deployed on campus, which includes a server for the
sensor data. This network can be utilized for future projects. Most importantly, many lessons
were learned regarding the actual deployment, monitoring and maintenance of a remote
sensor network in the New Hampshire climate. This knowledge will be critical to future
Smart City projects at the University of New Hampshire.
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