Arsenic Removal Using Aged Rapid Sand Filter Media

by C. Menard, D. Burt, M.R. Collins Water Treatment Technology Assistance Center Department of Civil Engineering University of New Hampshire

Summer 2007

OUTLINE

BACKGROUNDRESEARCH OBJECTIVE

Assess coating characteristics of 'aged' rapid sand filter media.

Quantity Arsenic removal potentials using "aged" rapid sand filter.

Evaluate interferences associated with the adsorption capacity of the metal oxide coating.

CONCLUSION

BACKGROUND

Reduction/Elimination of Arsenic

Ion exchange

Coagulation / Filtration

Membrane filtration (Reverse Osmosis)

Innovative adsorbents, e.g. metal oxides

BACKGROUND

Conventional Water Treatment (Pathogen Removal)

Coagulants

Aluminum Sulfate

Ferrous Sulfate, Ferric Sulfate, and Ferric Chloride

Slow sand filtration process

BACKGROUND

Natural Aging of Metal Hydroxides to More Stable Metal Oxides

> ■ $AI(OH)_3 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow AI_2O_3$ ■ $Fe(OH)_3 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow Fe_2O_3$

REMOVAL ENHANCEMENT POSSIBILITY!!! Make use of metal oxide coatings that form 'naturally' over many years on filter media in WTP from carryover of metal hydroxide flocs produced from "sweep-floc" coagulation

RESEARCH OBJECTIVES

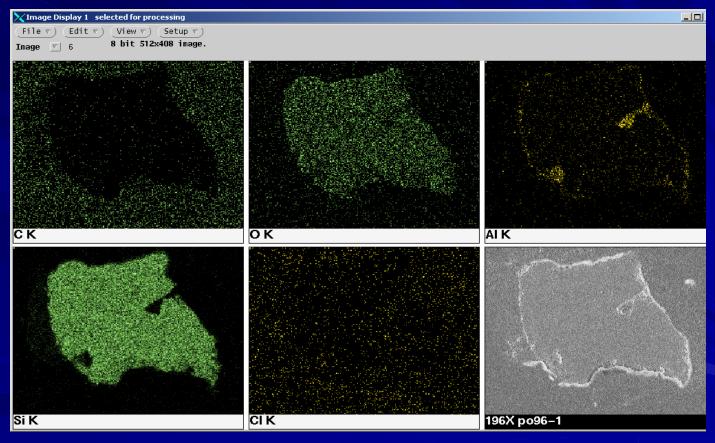
Explore the Arsenic removal potential of 'naturally' coated, regenerable sand filter media.

- 1) Assess coating characteristics of 'aged' rapid sand filter media.
- Quantify Arsenic removal potentials using 'aged' sand filter media.
- 3) Evaluate interferences associated with the adsorption capacity of the metal oxide coating.

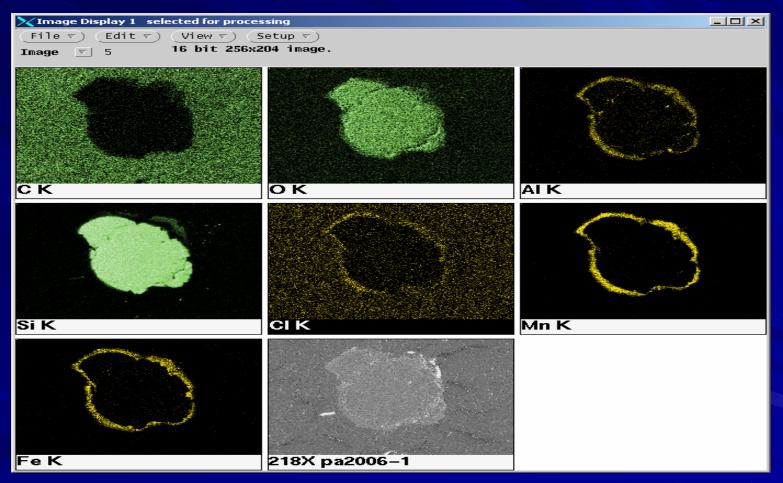
METHODOLOGY

Materials used for Objective 1
 Filter Media

 Portsmouth, NH WTP sand
 Philadelphia, PA WTP sand

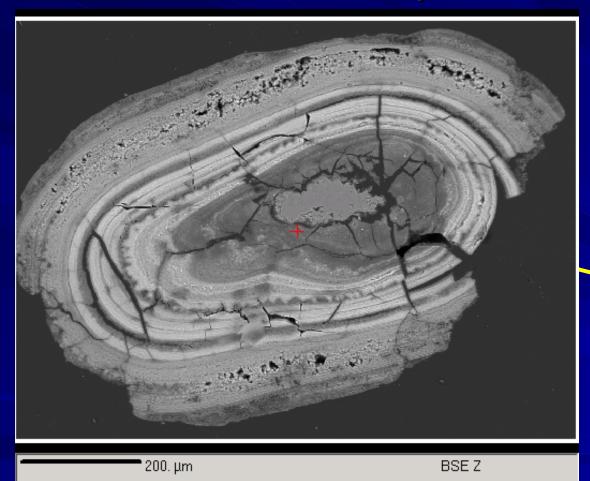

Characterization Methods

- SEM analysis
- Electron microprobe analysis


Portsmouth, NH Philadelphia, PA

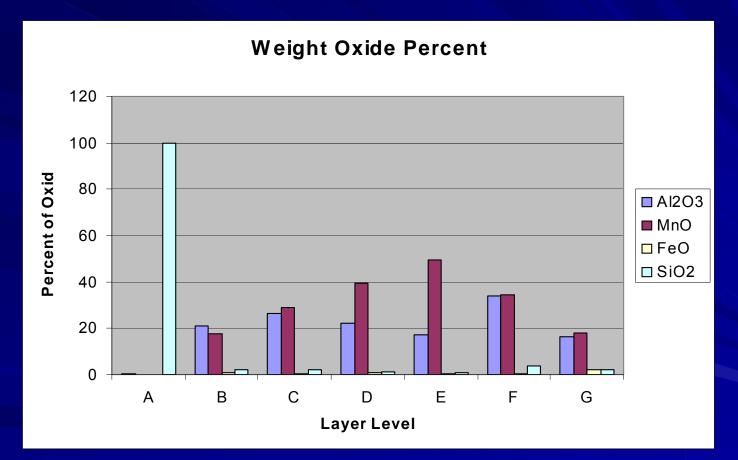
Average Metal Coating Content of Selected Rapid Sand Filters – SEM picture

Portsmouth, 1996


Average Metal Coating Content of Selected Rapid Sand Filters –SEM picture

Average Metal Coating Content of Selected Rapid Sand Filters –SEM picture

✓ Image Display 1 selected for processing								
File v) (Edit v) (View v) (Setup v)								
Image 🔽 11 8 bit 512x408 image.								
ск	ОК	AI K	Si K					
РК	СІК	Ca K	Mn K					
Fe K	Zn K	140X pa96–2						


Average Metal Coating Content of Selected Rapid Sand Filters

Electron Microprobe picture

Average Metal Coating Content of Selected Rapid Sand Filters

RESEARCH OBJECTIVES

Explore the Arsenic removal potential of 'naturally' coated, regenerable sand filter media.

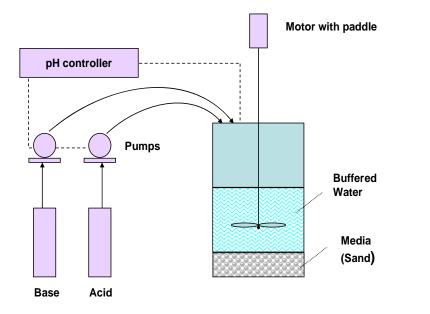
- 1) Assess coating characteristics of 'aged' rapid sand filter media.
- Quantify Arsenic removal potentials using 'aged' sand filter media.
- 3) Evaluate interferences associated with the adsorption capacity of the metal oxide coating.

METHODOLOGY

Experimental Set-Up

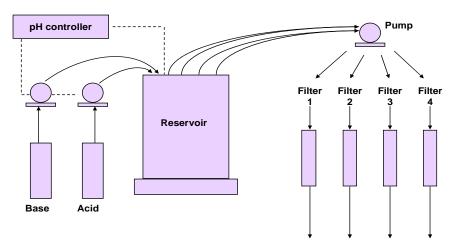
Backwash (BW) Procedure

- 50/100 mL sand in 500/1000 mL buffered water
- Backwash at target pH's for 1 hour


Equilibration Procedure


Buffered water at the pH of the Challenge solution

Challenge Procedure


Arsenic Solution according to the array

Backwash/Regeneration Set-Up

Challenge Set-Up

Effluent to Autosampler

RESEARCH OBJECTIVES

Explore the Arsenic removal potential of 'naturally' coated, regenerable sand filter media.

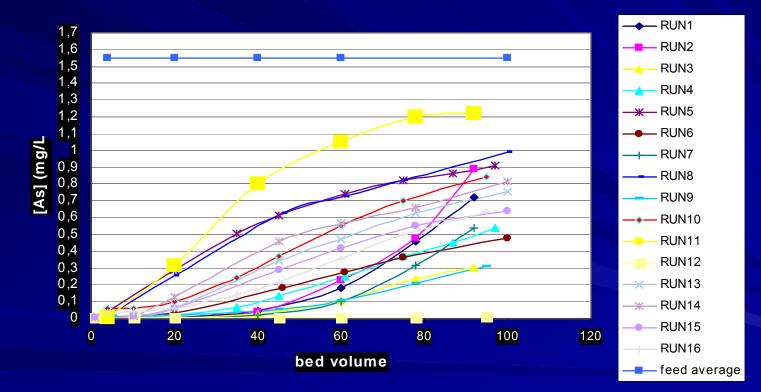
- 1) Assess coating characteristics of 'aged' rapid sand filter media.
- 2) Quantify Arsenic removal potentials using 'aged' sand filter media.
- 3) Evaluate interferences associated with the adsorption capacity of the metal oxide coating.

METHODOLOGY

L 16 ORTHOGONAL ARRAY

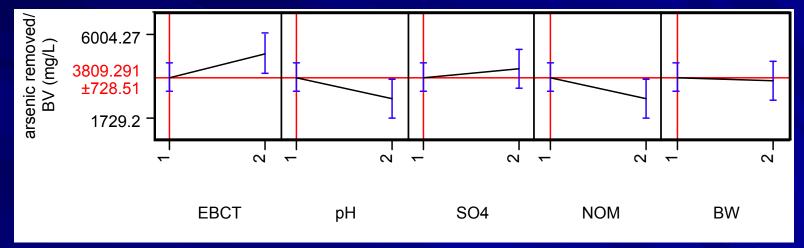
- 5 parameters
 - EBCT
 - pH of the challenge solution
 - Presence of sulfate
 - Presence of natural organic matter
 - pH of the backwashing
- 2 levels

RESULTS

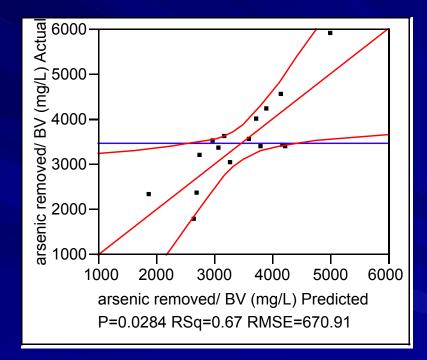

ARSENIC REMOVED / BED VOLUME at 95 BV (g/m³)

						[As]removed/ BV
RUN/BV	EBCT	рН	SO4	NOM	BW	95
RUN1	2.5	6	0	0	8	3363
RUN2	2.5	6	0	6	8	3176
RUN3	2.5	6	200	6	8	3593
RUN4	2.5	6	200	6	11	3502
RUN5	2.5	8	200	6	11	2302
RUN6	2.5	6	200	0	8	3361
RUN7	2.5	6	0	0	11	3521
RUN8	2.5	8	0	0	8	2351
RUN9	5	6	200	6	11	3413
RUN10	5	8	200	6	8	3011
RUN11	5	8	0	6	11	1755
RUN12	5	6	0	0	8	5873
RUN13	5	8	0	0	8	4216
RUN14	5	8	— — 0 — —	0	11	3980
RUN15	5	8	200	0	11	4531
RUN16	5	— 8 —	200	- 6-	11	3327

RESULTS


ARSENIC REMAINING VERSUS BED VOLUME

arsenic restant vs bed volume


INTERPRETATION

PREDICTION PROFILER

EBCT(0.0113) > pH (0.0186) > NOM (0.0227) >> SO4 (0.3028) > BW (0.6037)

INTERPRETATION MODEL EQUATION

Y = - 608,5*EBCT + 549,8*pH + (-213,7*SO4) + 526,7*NOM + 99,7*BW + 3454,6

SUMMARY

- Sand coating composed mainly with aluminum, manganese oxide with a beginning of small ratio of iron oxides
- EBCT, pH and NOM: most important effect
- Slight positive impact with the presence of sulfate
- No significant effect of BW pH: in the range of recommended pH for aluminum coated sand

Recommendations

Additional experiments to analyze more precisely effect of sulfate but also others anions like phosphate

Additional experiments to determine durability of coatings, test raw water

Pilot or Full scale demonstration

Analyse Portsmouth sand with Electron microprobe