Presentation 08/09/2005

Arsenic removal by Zero Valent Iron: Influence of pH and Redox Potential

Mathilde LE ROUX Advisor: Dr M. R. COLLINS

UNIVERSITY of NEW HAMPSHIRE

Aknowledgments

I would like to thank:

- My advisor, Dr M. Robin Collins
- Vaso Partinoudi and Peter Dawyer
- Brad Crannel
- The members of the ERG
- My French advisor Mrs. Nadia Saiyouri
- Funded from EPA through NE-WTTAC

Table of Contents

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Background

What is Arsenic?

- Arsenic forms in water
 → Arsenate As(V): H₃AsO₄, H₂AsO₄⁻, HAsO₄²⁻ and AsO₄³⁻
 → Arsenite As(III): H₃AsO₃, H₂AsO₃⁻, HAsO₃²⁻ and AsO₃³⁻
- Arsenite more mobile and toxic than Arsenate

Background

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

1.2 System As-O-H 25°C. 1bar Predominant forms at pH 1.0 H,AsO4 range 5 to 9: 0.8 H2AsO4 0.6 - As(V): $H_2AsO_4^-$, $HAsO_4^{2-}$ - As(III): H₃AsO₃ 0.4 Eh (V) HASO,2-(As20 0.2 AsO, H,ASO, 0 -0.2 AsO, -0.4 -0.6 -0.8 14 12 10 2 0 pН

II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Background

What is Arsenic?

• Toxicity: Cancer (skin, bladder, lung...), Cardiovascular disease, Immunological disorders, Diabetes ...

⇒ Regulations since 2003: [As]< 0.01mg/L

Where to find Arsenic?

II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Background

Why interest ourselves in Arsenic?

→ World wide problem

 \rightarrow Concentration range:

0.01 mg/L < [As] < 5 mg/L

→ Probably more than 50 000 000 people are threatened by a chronic Arsenic poisoning.

"Bangladesh is grappling the largest mass poisoning of a population in history... the scale of this environmental disaster is greater than any seen before"

World Health Organization, 09/08/2000

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Background

What to do?

- ⇒ Find a way to treat Arsenic
 - Efficient over a wide range of concentration
 - Cheap
 - Simple

II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Background

Previous researches

- Different adsorbents (AA, GFH, Goethite...)
- ZVI (mostly since 1999)
 - \rightarrow Efficiency generally more than 95%
 - → Kinetic
 - \rightarrow Anions competition
 - \rightarrow Influence of oxidation state
 - \rightarrow Mechanism

- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Background

Diagram E_h-pH for Iron

II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Study Objectives

Subject

Arsenic removal by Zero Valent Iron (ZVI): Influence of pH and Redox Potential

- Objectives
 - \rightarrow Assess the efficiency of ZVI to remove Arsenic
 - \rightarrow Test different pH/E_h conditions
 - \rightarrow Evaluate Sulfate competition with Arsenic

		Trial	Factors			
		Па	рН	E _h (mV)	Sulfate	
	Experimental	1			+	
NE-WTTAC	approach:	2	Б	+	-	
ECN		3	5		+	
Controlo	$\rightarrow Orthogonal$	4			-	
Nantes		5		+	+	
	allay	6	6		-	
I. Background		7	U	-	+	
		8			-	
II. Study		9		+	+	
Objectives		10	7		-	
III Materials		11		<u>_</u>	+	
and Mathada		12			-	
and methods		13	-	+	+	
IV. Results		14	8		-	
		15		_	+	
v. Conclusions		16			-	
		17	9	+	+	
		18			-	
		19		_	+	
		20			_	

I. Background

- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Principle

- pH influence
 - → Injection of Acid or Base to control pH (V<35mL)
 → pH range: 5-9
 - E_h influence $\rightarrow N_2$ or O_2 bubbling $\rightarrow E_h$ range: Low to High

I. Background

- II. Study Objectives
- III. Materials and Methods

IV. Results

V. Conclusions

Reactants

- Arsenic from As standard 1000 mg/L → 3.22 mg/L
- ZVI Peerless sieved <0.3mm
 → 200 mg/L
- Sulfate Na_2SO_4 $\rightarrow 250 \text{ mg/L}$
- Salt NaCI $\rightarrow 0.005 \text{ M}$

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Experimental setting

. Background

II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Process

- Overnight ZVI, salt and RO water with gas bubbling. Addition of Sulfate for the competition study
- 2. Injection of Arsenic in the morning
- 3. Samples after 10 min, 30 min, 1h, 2h, 3h, 5h $V < 10\%V_{initial} \rightarrow limited volume$

- I. Background
- II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Materials and Methods

- Samples
 - \rightarrow Filtered and Conserved with 2 drops of HNO₃ in the fridge
 - \rightarrow About 11 mL each
- Analyses
 - → Dissolved Arsenic and Iron
 - → Private laboratory
 - → Method : EPA 200.7 with direct aspiration
 - \rightarrow Detection limit 0.016 mg/L
- Control
 - → pH and Eh values recorded and calculus of the standard variance

- I. Background
- II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

- Kinetic studies
 → Time to reach the steady state
- Influence of pH/E_h on the removal
- Sulfate competition
- Data analysis (ANOVA)
- Modeling

Results

Example of results

Example of results

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Kinetic studies

- Time to reach the steady state
 → Between 30 to 120 min
- Reaction very quick with O₂
 → pH 5: 80.62% removal after 30 min
 → pH 6: 50.93% removal after 30 min
 → pH 7: 77.70% removal after 10 min
 → pH 8: 75.31% removal after 10 min
 → pH 9: 51.55% removal after 30 min

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Influence of pH and E_h

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results

V. Conclusions

Results

Influence of E_h

- Always less than 22 % removal with nitrogen bubbling except for pH 8 (70.03 %) Always more than 63 % removal with oxygen bubbling
- \rightarrow Importance of the oxidation state of the Iron.

Influence of pH

- With O₂: Higher removal at pH 5
- With N₂: Better removal at pH 8

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Competition with sulfate

- I. Background
- II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Results

Competition with sulfate Sulfate not very influent

• With O₂

- \rightarrow Higher competition at high pH
- → Removal slightly improved at low pH

• With N_2

- → Higher competition at low pH
- \rightarrow Removal slightly improved at pH 9

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Cono n	ditio s	Without Sulfate	With Sulfate			
рН	E _h	Arsenic Adsorption Density (mg/g)	Arsenic Adsorption Density (mg/g)			
F	02	15.72	15.95			
5	N_2	1.31	1.69			
6	02	10.21	15.59			
0	N ₂ 1.95		1.24			
7	02	15.13	11.61			
/	N_2	3.49	1.40			
0	02	12.50	11.79			
0	N_2	11.31	5.71			
0	02	9.31	8.68			
7	N_2	1.69	4.05			

Results

Analysis of Variance (ANOVA)

I. Background	Source	DF	Sum of Squares	F Ratio	Prob > F	Contribution %
Objectives	Redox	1	429.20112	55.6989	<.0001	86.27
III. Materials and Methods	pH*Redox	1	58.03281	7.5311	0.0178	11.41
	рН	1	2.28484	0.2965	0.5961	0.2
	Redox*Sulfate	1	2.05440	0.2666	0.6150	0.1
IV. Results	pH*Sulfate	1	1.90969	0.2478	0.6276	
V. Conclusions	pH*Redox*Sulfate	1	1.18336	0.1536	0.7020	> 2
	Sulfate	1	1.20541	0.1564	0.6994	

- II. Study Objectives
- III. Materials and Methods

IV. Results

V. Conclusions

Results

Modeling with Jump

- Output: Arsenic Adsorption Density (mg/g)
- Input: pH, E_h, Sulfate
- Model defined by the following coefficient:

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.6895	3.134456	3.09	0.0093
рН	-0.239	0.438912	-0.54	0.5961
Redox[1]	-4.6325	0.620715	-7.46	<.0001
Sulfate[1]	0.2455	0.620715	0.40	0.6994
(pH-7)*Redox[1]	1.2045	0.438912	2.74	0.0178
(pH-7)*Sulfate[1]	0.2185	0.438912	0.50	0.6276
Redox[1]*Sulfate[1]	0.3205	0.620715	0.52	0.6150
(pH-7)*Redox[1]*Sulfate[1]	-0.172	0.438912	-0.39	0.7020

 \rightarrow [As] =9.69 -0.24 pH - 4.63 Redox[1] - 0.25 Sulfate [1] ...

Efficiency of the model

Results of the model

Influence of each factor on Arsenic removal

If we have...

Study				Low pH	High pH	Low E _h	High E _h	
Objectives	What is the	∕трН	No Sulfate			111		
I. Materials and Methods	effect of	ľΕ	Junate	111	11			
/. Results		∕рн	With sulfate			111		
. Conclusions		∕ ™ E	Sunate	111	11			
	Legend: /+ 0 to 25 %			//+ 2	25 to 100 % ///+ > 100 %			
	\ - 0 to 25 %			- 2	5 to 100 %	_\+ > 100 %		

Conclusions

- I. Background
- II. Study Objectives

III. Materials and Methods

IV. Results

V. Conclusions

Conclusions

- Kinetic Study
 → Quick reaction: 30 to 120 min
- Influence of Redox potential
 - → Removal more efficient with Oxygen WHY? Formation of fresh oxides
- Influence of pH
 - \rightarrow With O₂: Increasing pH has a negative effect WHY? Competition with OH⁻
 - → With N₂: Better removal at pH 8 (with or without sulfate) WHY?

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Conclusions

Solubility of iron hydroxides as a function of pH

Ferrous oxides more efficient than ferric oxides

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Conclusions

- Sulfate competition
 - \rightarrow Not a very important action
 - \rightarrow Higher competition at high pH with O₂
 - \rightarrow Improve the removal at low pH with O₂

- I. Background
- II. Study Objectives
- III. Materials and Methods
- IV. Results
- V. Conclusions

Recommendations

Independent data to validate the model

More studies needed at various Redox levels

Further studies at pH 8 (pH 8, Eh low)

Additional competition studies needed at various pH/E_h conditions

Influence of L/S ratio

