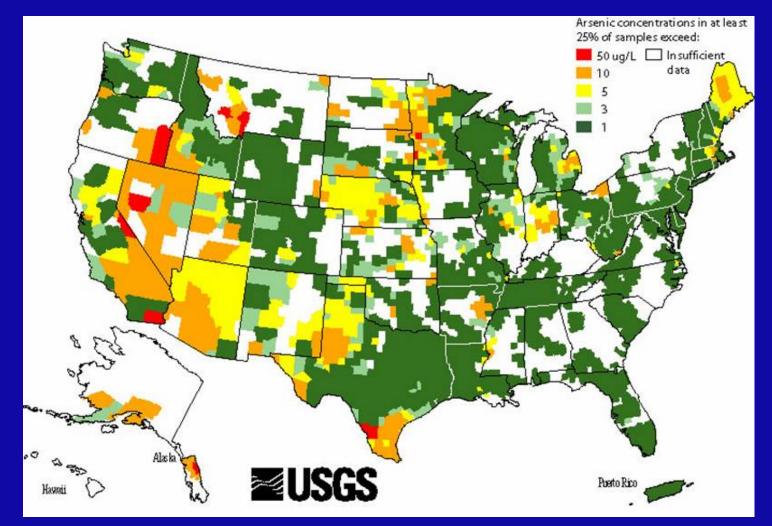
The Evaluation of Competitive Adsorption on Selected Arsenic Adsorbents

Emese Hadnagy, M. Robin Collins, Kevin H. Gardner

Water Treatment Technology Assistance Center (WTTAC) Environmental Research Group Department of Civil Engineering University of New Hampshire

> AWWA Annual Conference June 13-17, 2004


Acknowledgements

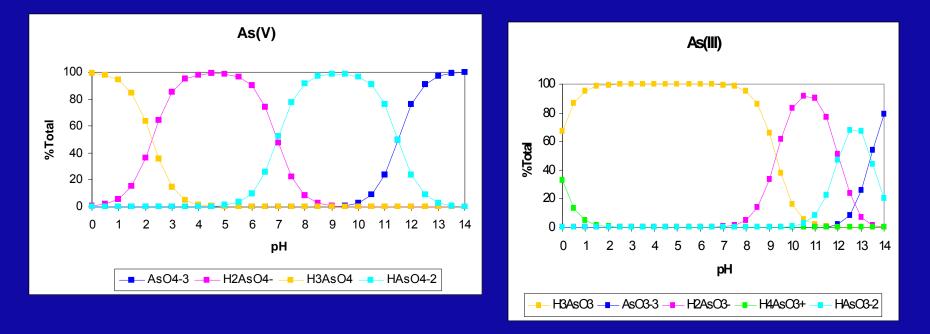
- Funding from the U.S. Environmental Protection Agency through the WTTAC at the University of New Hampshire (UNH)
- Peter Dwyer, Melissa Smith, Mélanie Martin-Doole, Sam Heffron, and Vaso Partinoudi in the WTTAC
- Members of the Environmental Research Group at UNH

New Arsenic Rule

- Arsenic is a human carcinogen (EPA); long term exposure can cause e.g. cancer or heart disease
- New 10 µg/L Arsenic MCL (EPA)
- Effective from February 22, 2002; compliance deadline is January 23, 2006
- 4,000 public drinking water systems affected (97% small systems)
- ~13 million people affected
- Research simple, cheap and efficient treatment technologies

Arsenic in Groundwater

Background


Arsenic Occurrence and Speciation

- Naturally present in the environment (soil, rocks etc.)
- Mainly groundwater problem
- High Arsenic occurrence areas in the US:
 - Western states
 - Parts of the Midwest
 - New England

Speciation:

- As (III) Arsenite, dominant in reduced environment Dominant form is H₃AsO₃ at pH < 9.3
- As (V) Arsenate, dominant in oxidized environment Dominant forms are H₂AsO₄⁻ at pH < 7 and HAsO₄⁻² at pH > 7

Arsenic Speciation Graphs

The pKa values for As(V) are 2.2, 7, and 11.5 and for As(III) 9.3, 12, and 13.4. T = 25 °C and I = 0.000M.

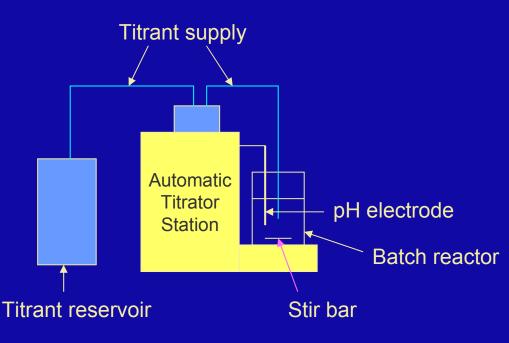
Background

Research Objectives

Preliminary Adsorbent Evaluation

- To test the arsenic removal efficiency of potential adsorbent materials
- To conduct kinetic and isotherm studies for selected adsorbents

Anion Competition Study


 To evaluate the effect of competing anions on arsenic adsorption and establish a preferential anion removal series for the selected adsorbents

Experimental Approach

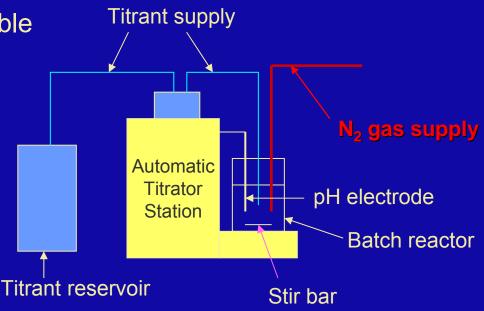
Experimental Apparatus:

- Constant temperature (22-23
 °C) and pH (6)
- Time (2-3 hrs)

Experimental Approach (cont'd)

Typical solution composition (isotherm studies):

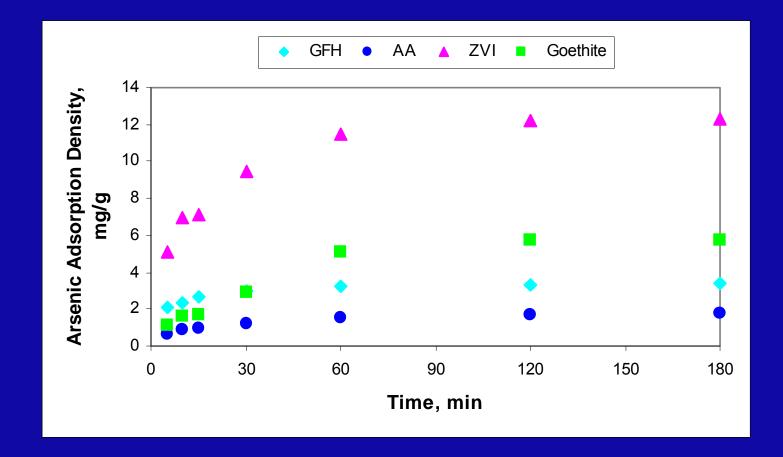
- Background alkalinity 50 mg CaCO₃/L
- Background ionic strength 0.01M
- Arsenic as As(V) [0.15-2.0 mg/L]
- Adsorbents (powder or granular) [56-5556 mg/L]



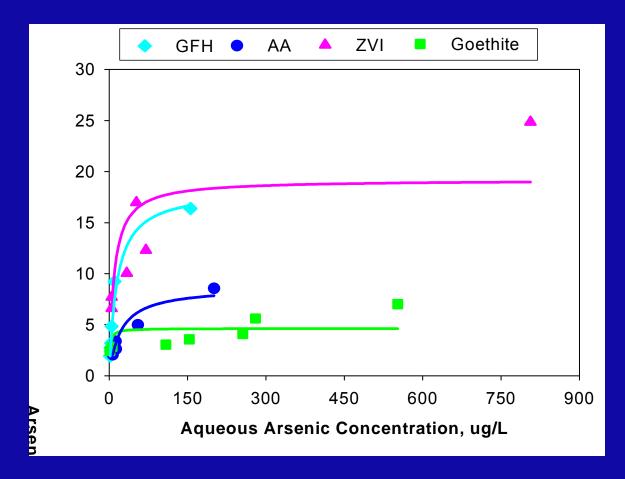
Experimental Approach (cont'd)

Anion competition studies:

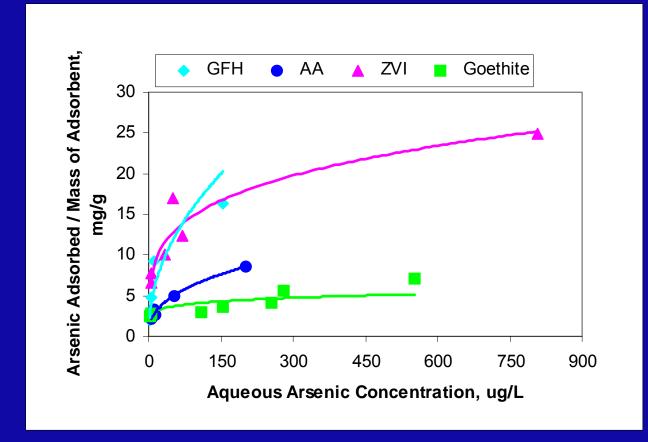
- Nitrogen gas constantly bubbled through solution
- Competing anions added
- No background alkalinity adjustment
- Ionic strength 0.075M or variable


Results and Discussion Outline

- Adsorbent Materials Tested
- Kinetic Study
- Isotherm Study
- Anion Competition Study
 - Preferential Anion Adsorption Series
 - Effect of Ionic Strength
 - Effect of Normalizing Anion Concentration Differences
- Treated Volume Example


Adsorbent Materials Tested

#	Adsorbent Material	Grain Size, um (mesh)	Adsorption Density, ug/g	Arsenic Removal, %	
1	Granular Ferric Hydroxide, GFH	<150	2318	99	
2	Magnesium Oxide	<150	1329	55	
3	Activated Alumina AA	(80 - 200)	1669	96	
4	MN4 Celatom Diatomite (DE)	<150	6	24	
5	AbsorbaKleen	<23	252	27	
6	Carasol	Carasol 250 - 700 157		17	
7	Apatite (mineral)	<177	0	0	
8	Zero-Valent Iron ZVI	<177	799	98	
9	Bone Char	<177	56	8	
10	Celite	<150	27	4	
11	Fishbone	"filings"	17	3	
12	Magnetite	<5	120	18	
13	Hematite	<5	355	56	
14	Goethite	(30 - 50)	626	99	
15	DE coated with Hematite	<300	1734	97	


Kinetic Study

Langmuir Isotherms

Freundlich Isotherms

Isotherm Constants

Langmuir Isotherm

Adsorbent	Nmax	b	R^2
GFH	18.2485	0.0680	0.9853
AA	8.6863	0.0459	0.9527
ZVI	19.1832	0.1108	0.8255
Goethite	4.6325	0.7200	0.6814

Freundlich Isotherm

Adsorbent	K(F)	1/n	R^2
GFH	1.8173	0.4783	0.8703
AA	1.0326	0.3992	0.9614
ZVI	4.9148	0.2440	0.8994
Goethite	2.1218	0.1411	0.6814

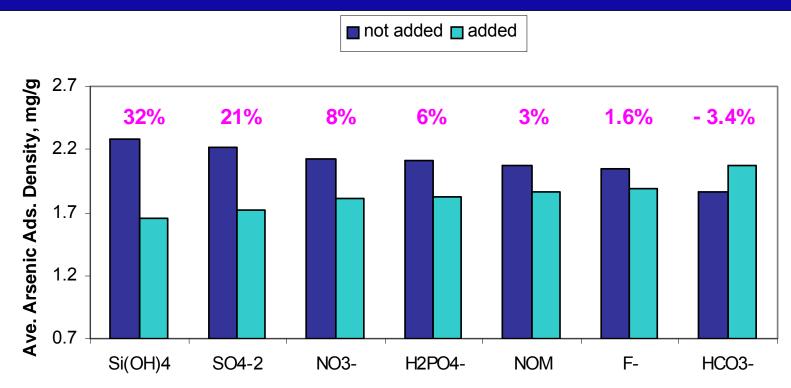
Research Goals for the Anion Competition Study

- To determine which anions have significant influence on arsenic removal
- To rank the competing anions in a preferential adsorption series
- To compare anion competition between the 3 adsorbent materials tested (AA, GFH, and goethite)

Competing Anions Tested

Anion	Max. Concentration, mg/L		
Phosphate [H2PO4-]	1		
Sulfate [SO4-2]	250		
Nitrate [NO3-]	45		
Ortho-silicate [Si(OH)4]	50		
Fluoride [F-]	2		
Bicarbonate [as CaCO3]	250		
Natural Organic Matter [as DOC]	4		

Design of Experiments


Fractional factorial design of experiment and ANOVA test:

The influence of each anion as %contribution to the total variation in arsenic adsorption is estimated. The experimental error or unexplained variation can be estimated as well.

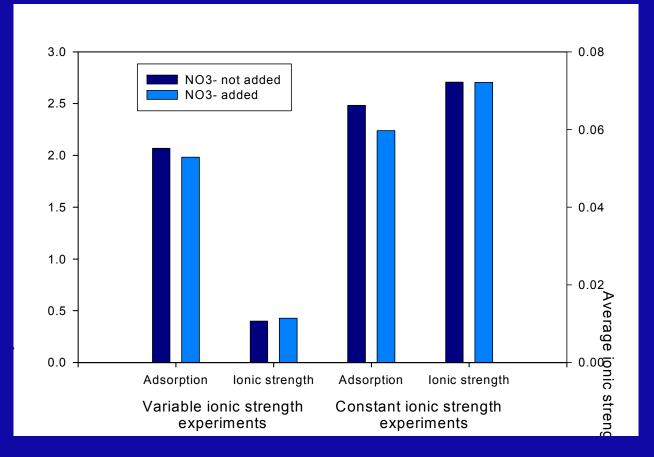
- 7 factors competing anions
- 2 levels for each factor anion was not or was added
- L16 Orthogonal Array 16 experiments (for each adsorbent)
- Experimental resolution the effect of all main factors and groups of two-factor interactions was estimated

Anion Competition Factor Plot

On Activated Alumina

Enhancing Effect of Bicarbonate

- Observed on Activated Alumina (AA)
- Wijnja et al. (2000) also observed carbonate enhancing effect (sulfate adsorption on AA at pH 6)
- The process was described with the following concurrent adsorption reactions:
 AI-OH + HCO₃⁻ ↔ AI-OCOO⁻ + H₂O
 AI-OH + H⁺ ↔ AI-OH₂⁺
- Possible mechanism generation of additional adsorption sites by extra protonated surface groups


Preferential Anion Adsorption Series

- Activated Alumina (7% error, 18% interactions): 32% 21% 8% 6% 3% 1.6% Si(OH)₄ > SO₄⁻² > NO₃⁻ ~ H₂PO₄⁻ > NOM ~ F⁻
- Granular Ferric Hydroxide (3% error, 14% interactions): 31% 21% 10% 8% 7% 6% $SO_4^{-2} > Si(OH)_4 > F^- \sim H_2PO_4^- \sim NOM \sim HCO_3^-$
- Goethite (3% error, 30% interactions): 33% 12% 10% 1.5% Si(OH)₄ > H₂PO₄⁻ ~ NO₃⁻ > F⁻

Effect of Ionic Strength

- Experiments with no background ionic strength adjustment
- I = 0.0001-0.0224M vs. previous 0.075M
- As I increased, the influence of:
 - SO₄-2 increased on AA and GFH
 - Si(OH)₄ and $H_2PO_4^-$ increased on goethite
 - NO_3^- increased on AA and goethite

Effect of Ionic Strength (cont'd)

Effect of Normalizing Anion Concentration Differences

- Experiments with equal milliequivalent based anion concentrations (5.2 meq/L)
- Only conducted with AA
- I = 0.0105 to 0.0235 M (extremes: 0.0001 to 0.034M)
- Findings:
 - 21% 15% 2.6% 0%
 - $Si(OH)_4 > F^- > SO_4^{-2} > HCO_3^{-1}$

- F⁻ exhibited increased influence when present at higher concentrations (15% vs. 1.6% at lower conc.)

Estimated Treated Volume Differences Due to Anion Competition

Assumptions:

- Single column
- Constant influent Arsenic concentration
- Constant temperature and pH
- Equilibrium conditions
- Treatment till exhaustion of adsorbent material
- Adsorption based on both Freundlich and Langmuir isotherms

Estimated Treated Volume Differences Due to Anion Competition (cont'd)

Volume treated per g filter material – assuming 50µg/L column influent arsenic concentration

Isotherm	Adsorbent	No Anions Present	nions Present Anions Present*		
Model	Ausoibein	Volume, L/g	Volume, L/g	Decrease in Vol., %	
	AA	98	60	39	
Freundlich	ZVI	256	n/a	n/a	
FIEUNUIICH	GFH	236	198	16	
	goethite	74	61	18	
	AA	120	82	31	
Langmuir	ZVI	325	n/a	n/a	
Langmuir	GFH	282	244	14	
	goethite	90	77	14	

1 L/g = 119.8 gal/lb; pH = 6; T = 21-23 C; No anions: I = 0.01M; * I = 0.075M, max. realistic anion concentrations

Significant Findings

- Anions decreased arsenic adsorption on AA, GFH, and goethite
- Varying ionic strength and initial anion concentrations


 influenced
 anion adsorption
 influenced

 competition with Arsenic

Significant Findings (cont'd)

- Preferential anion adsorption series were established for AA, GFH, and goethite
- Silicate competed with As for adsorption sites on all 3 adsorbents at pH 6 (!)
- Sulfate also competed (esp. on AA and GFH). Sulfate was influenced by the ionic strength conditions as well.
- Bicarbonate slightly enhanced As adsorption on AA
- Fluoricle competed with As on AA when present at higher concentrations

Questions?

Orthogonal Array Experimental Design

Experiment	Anion, mg/L						
Experiment	H2PO4-	SO4-2	NO3-	Si(OH)4	F-	HCO3- (as CaCO3)	NOM (as DOC)
1	0	0	0	0	0	0	0
2	0	0	0	50	2	250	4
3	0	0	45	0	0	250	4
4	0	0	45	50	2	0	0
5	0	250	45	0	2	0	4
6	0	250	45	50	0	250	0
7	0	250	0	0	2	250	0
8	0	250	0	50	0	0	4
9	1	0	45	0	2	250	0
10	1	0	45	50	0	0	4
11	1	0	0	0	2	0	4
12	1	0	0	50	0	250	0
13	1	250	0	0	0	250	4
14	1	250	0	50	2	0	0
15	1	250	45	0	0	0	0
16	1	250	45	50	2	250	4

Recommendations for Future Research

- Evaluate anion competition at other pH values, e.g pH 7 or 8
- Further evaluate ZVI
- Further evaluate diatomaceous earth coated with hematite and other adsorbents, e.g. AA and various iron types
- Column studies anion competition under continuous-flow conditions?