Assessing Arsenic Removal By Zero Valent Iron Under Various Water Quality and Precoat Filtration Conditions

> Paul Pepler, EIT GZA GeoEnvironmental, Inc.

Dr. M.R. Collins, PE Water Treatment Technology Assistance Center (WTTAC) Department of Civil Engineering, UNH

Funding Provided by the US EPA

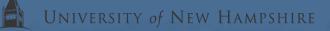
Project Objectives

BENCH STUDY, Task I

 Assess arsenic removal by zero valent iron under various water quality conditions to determine optimum conditions for arsenic adsorption and the minimization of iron dissolution

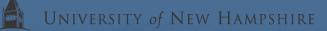
PILOT STUDY, Task II

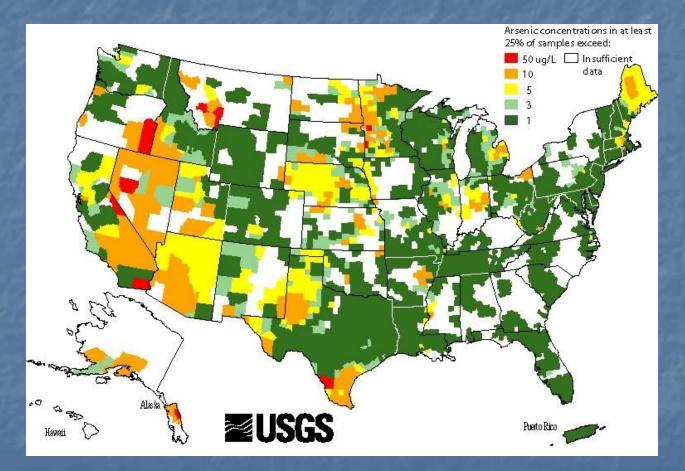
 Develop a ZVI amended precoat filtration strategy for the removal of arsenic from drinking water while minimizing iron dissolution



Outline

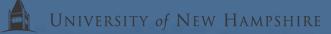
Background
Adsorption Processes
Experimental Approach
Results and Conclusions




Background

Arsenic is a class A human carcinogen
 Arsenic concentrations in public drinking water supplies is regulated by the USEPA
 MCL was reduced from 0.05mg/L to 0.01mg/L in 2001 with compliance by 2006

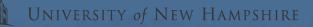
US Arsenic Distribution



Effect on Water Systems

EPA estimates annual national costs to be \$181 million
Harder on smaller systems
Need for technologies that are inexpensive, efficient, easy to implement and operate

Best Available Technologies for As Removal (USEPA 2003) Ion exchange Activated alumina Oxidation / filtration Reverse osmosis Enhanced coagulation and flocculation Enhanced lime softening



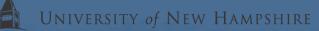
Some Adsorbents

Iron oxide coated sand Iron Hydroxides and Oxides Geothite • Granular ferric hydroxide Lanthanum oxide Zeolite Zero-Valent Iron

Zero Valent Iron

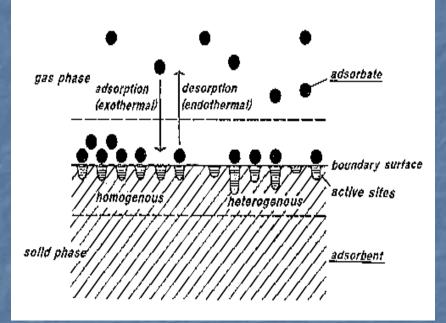
High adsorption capacity
Relatively fast removal kinetics
Inexpensive
Efficient over wide range of pH
Simple

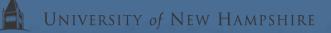
Outline


Background

Adsorption Processes

Experimental Approach


Results and Conclusions


Adsorption Processes

Physical Adsorption
 Exchange Adsorption
 Chemical Adsorption

Source: activated-carbon.com

Outline

Background

Adsorption Processes

Experimental Approach

Results and Conclusions

Project Objectives

BENCH STUDIES, Task I

 Assess arsenic removal by zero valent iron under various water quality conditions to determine optimum conditions for arsenic adsorption and the minimization of iron dissolution

PILOT STUDIES, Task II

 Develop a ZVI amended precoat filtration strategy for the removal of arsenic from drinking water while minimizing iron dissolution

Experimental Design:

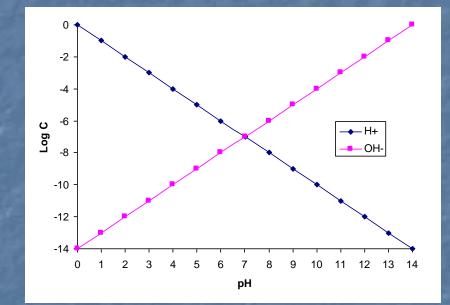
• 24 Treatments

BENCH STUDY

- 4 levels for pH
- 3 levels for Oxidan
- 2 levels for sulfate

	Trial	рН	Oxidant	Sulfate
	1		N ₂	+
Jacob Contract	2			-
an'	3	5	O ₂	+
gn: –	4	5		-
1.000	5		Cl ₂	+
1	6		012	-
100	7		N ₂	+
1000	8			-
	9	6	O2	+
1-20	10	0		-
	11		Cl ₂	+
ant	12			-
1	13		N2	+
122	14			-
te	15	7	O ₂	+
100	16	1		
	17		Cl ₂	+
17.	18			-
1 50	19		N ₂	+
	20	8		-
	21		O ₂	+
	22			-
	23		Cl ₂	+
	24			-

Bench Study Experimental set up



Calculating pH

■ pH = -Log (H⁺)

 $H_2O \leftrightarrow H^+ + OH^-$

■ K_W = (H⁺)(OH⁻)=10⁻¹⁴ @ 25°C

 $Fe(OH)_3(s) + 3H^+ \leftrightarrow Fe^{3+} + 3H_2O$

Assessing Factors Influencing Arsenic Removal Calculating Redox Condition $pe = -Log(e^{-})$

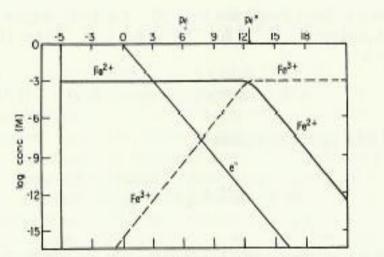
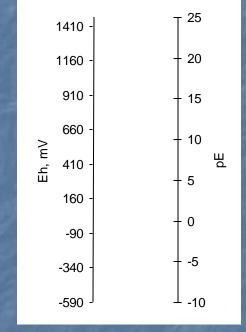
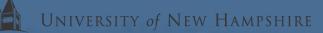
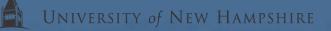



Figure 8.1. Redox equilibrium Fe^{3+} , Fe^{2+} . Equilibrium distribution of a 10^{-3} M solution of aqueous iron as a function of pe (acid solution).


Source: Stumm and Morgan, 1996

 $Fe^{2+} = Fe^{3+} + e^{-}$

Eh = 2.3RT/F*peEh = 0.059pe



Assessing Factors Influencing Arsenic Removal Oxidation Reduction (Redox) Reactions

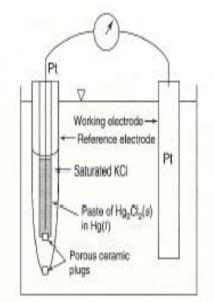
Oxidation = a chemical donates an electron Fe²⁺ = Fe³⁺ + e⁻
Reduction = a chemical accepts an electron ¹/₄ O₂ + e⁻ + H⁺ = ¹/₂ H₂O
Redox reaction 4Fe²⁺ + 4H⁺ + O₂ = 4Fe³⁺ + 2H₂O

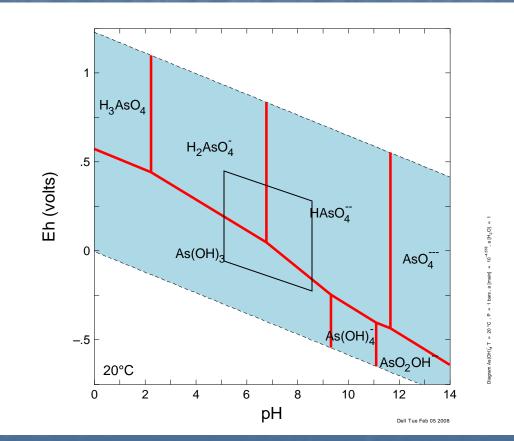
Measuring Redox Condition Oxidation Reduction Potential (ORP) measured as Eh

 ORP is the voltage measured between a redox (Pt) electrode and a reference electrode

 Under reducing conditions potentials are negative

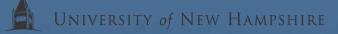
 $E_{h} = 0.059 pe$




Figure 9.19 A calomel reference electrode (on left) connected to a platinum working electrode for the measurement of solution $E_{\mu\nu}$ if the Pt electrode is selectively responsive to the H⁺/H₂(g) couple, and if solution is bubbled with H₂(g) at a known partial pressure, the reading on the valimeter can be related to the pH of the solution.

Source: Benjamin, 2002

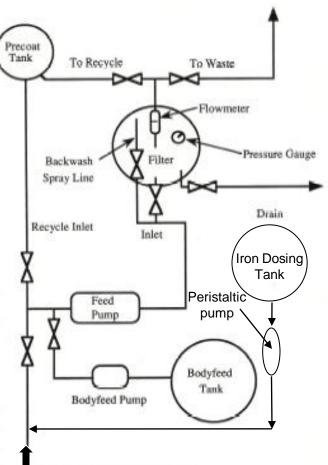
Putting it all together


UNIVERSITY of NEW HAMPSHIRE

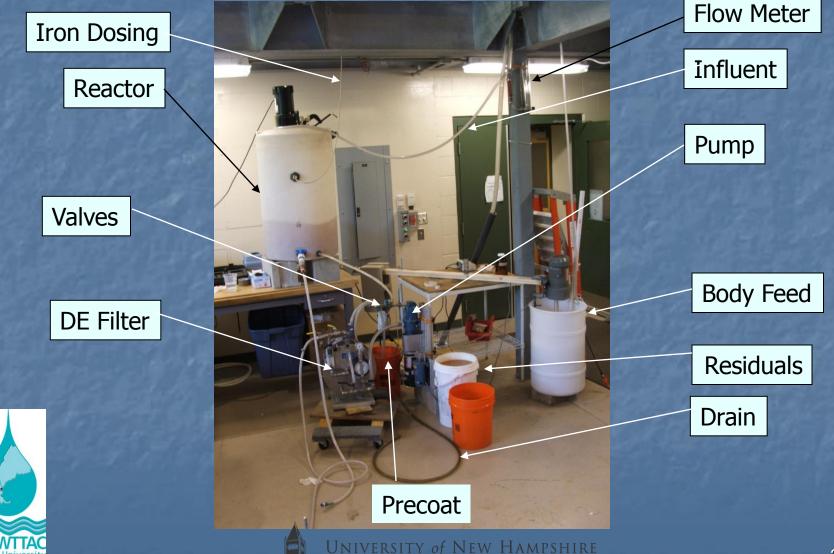
20

Presence/Absence SO₄

May play a role in arsenic removalsNot clear in the literature


Pilot Study Experimental Design

Trial	Oxidant	Contact Time, minutes
1	Cl ₂	22
2	O ₂	22
3	Cl ₂	2
4	O ₂	2


Precoat filtration

Precoat filtration

Outline

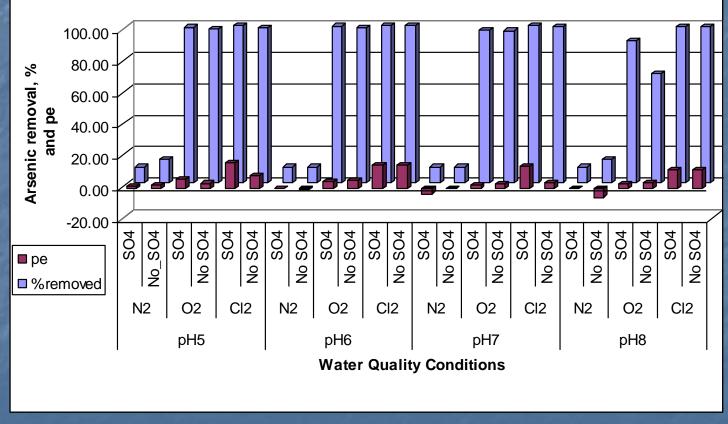
Background

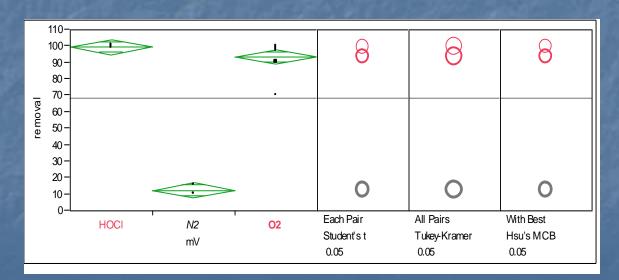
Adsorption Processes

Experimental Approach

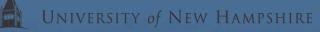
Results and Conclusions

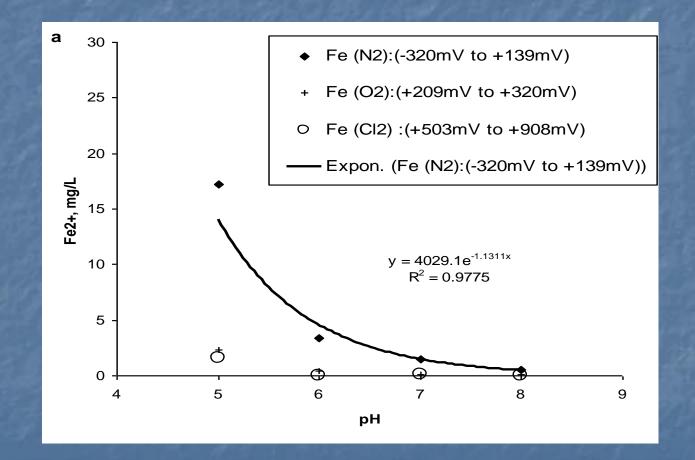
Results



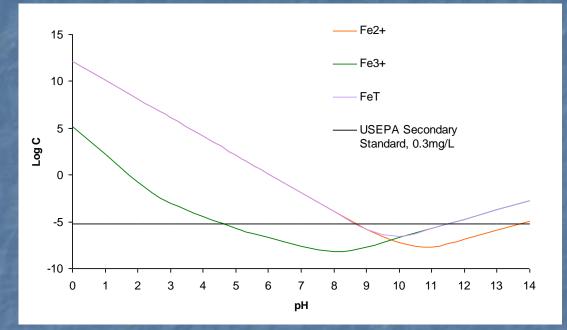

BENCH STUDY, Task I

Assessing arsenic removal by ZVI under various water quality conditions to determine optimum conditions for arsenic adsorption and the minimization of iron dissolution




Main Factors and Interactions	F Ratio	р	% contribution
рН	3.4473	0.0881	0.14
Oxidant	866.9455	<.0001	97.88
pH*Oxidant	6.2259	0.014	0.59
SO4	0.3914	0.5433	-0.03
pH*SO4	1.5678	0.2344	0.03
Oxidant*SO4	1.6087	0.2405	0.07
pH*Oxidant*SO4	1.2392	0.3242	0.03

Assessing Iron Solubility, Task I



Calculated pH of minimum iron solubility

Kinetics of Fe²⁺ oxidation at pH values

Solubility of iron as a function of pH. Includes Fe2+ and Fe3+ complexes of CI- and OH- in equilibrium with $Fe(OH)_2$ and $Fe(OH)_3$.

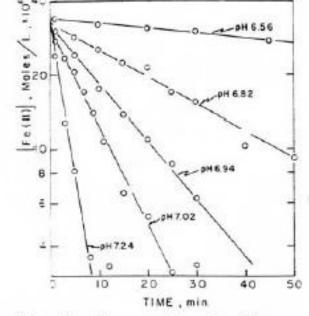
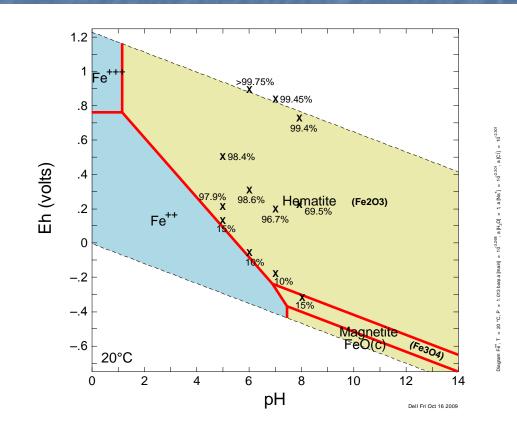
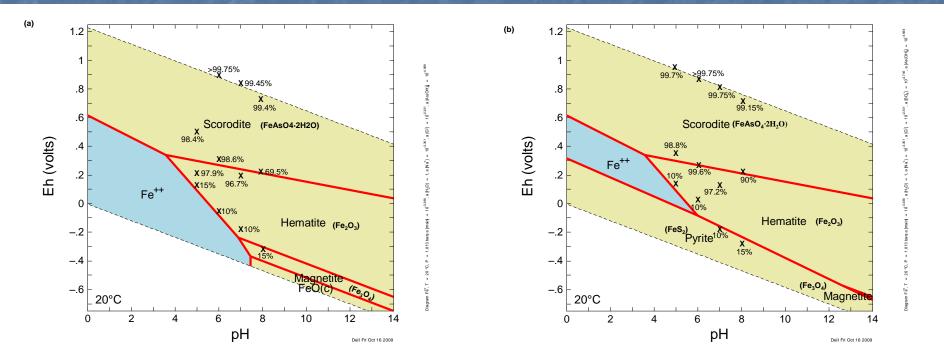


Figure 1. Oxygenation rate of ferrous iron is proportional to Fe(II) and is strongly influenced by pH


20.5 ° C. $P_0 = const.$

Source: Stumm and Lee, 1961

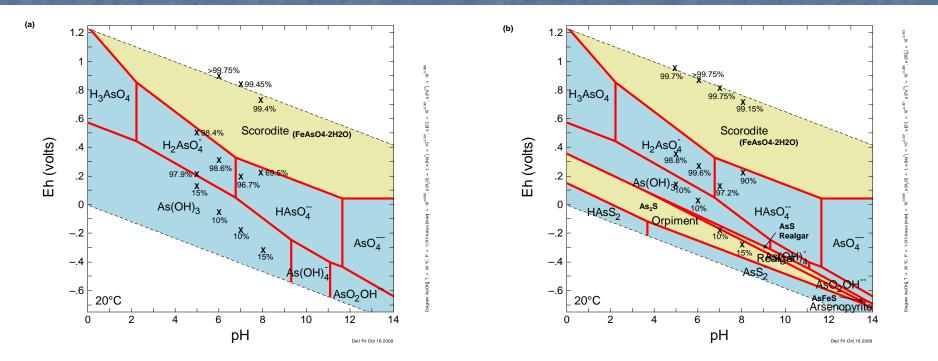
Predominance Diagram for Iron


Does not include As or SO₄

UNIVERSITY of NEW HAMPSHIRE

31

Predominance Diagram for Iron



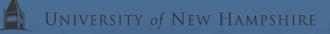
Without SO₄

With SO₄

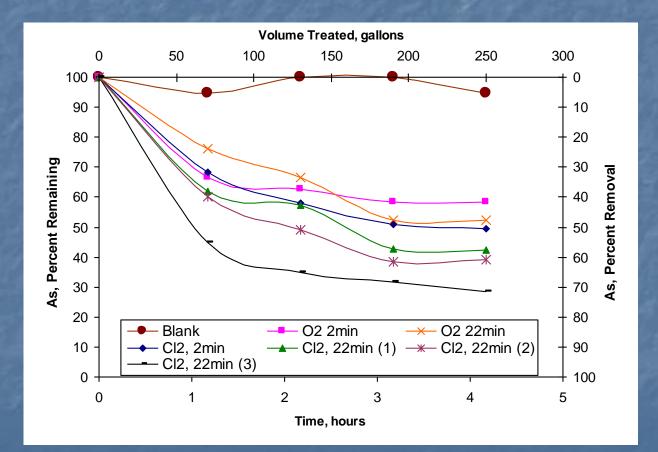
Assessing Factors Influencing Arsenic Removal Predominance Diagram for Arsenic

Without SO₄

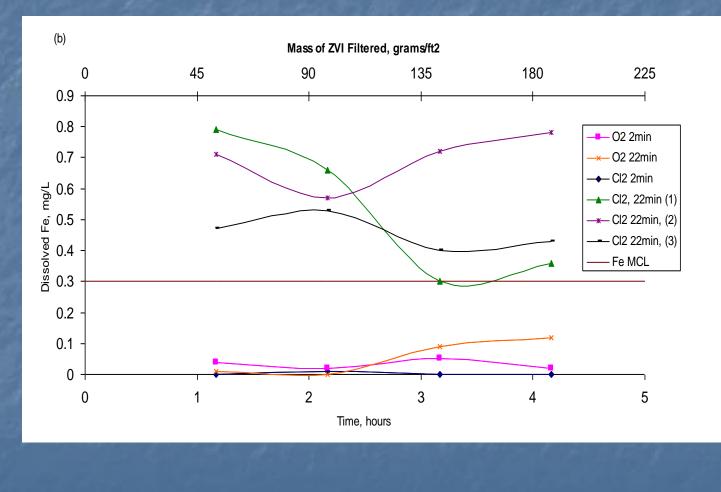
With SO₄



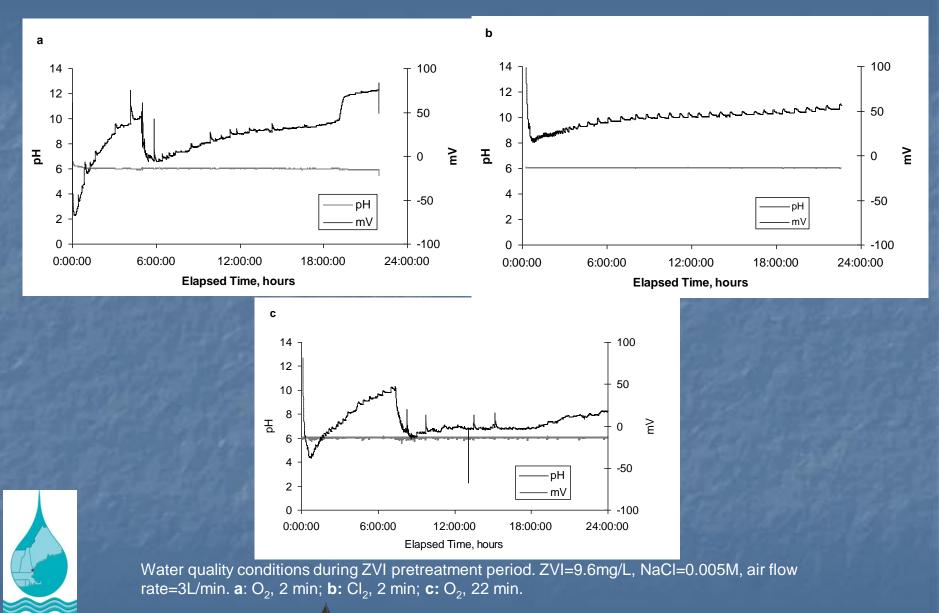
Take Home Message

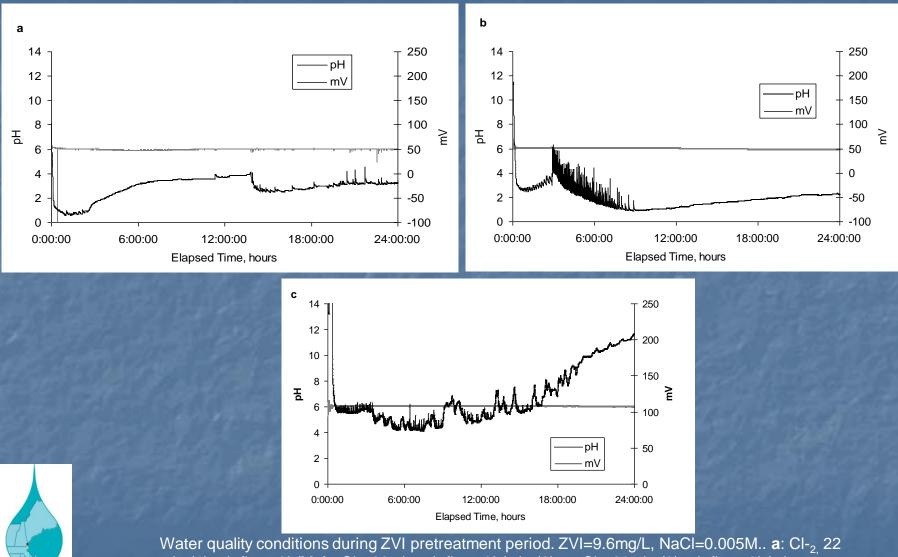

 ORP is very important to arsenic removal by ZVI

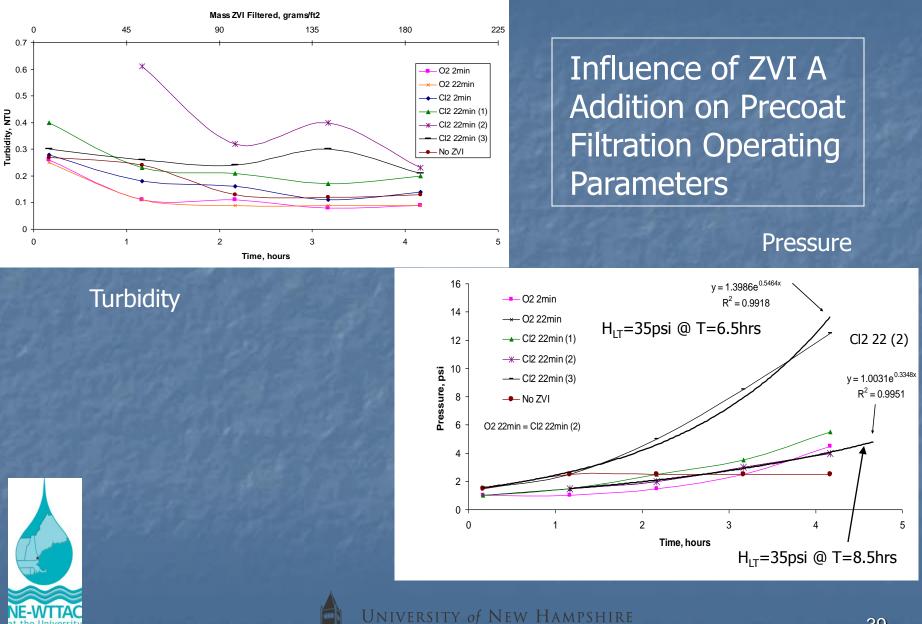
pH is not very important from 5-8 if sufficient time allowed for ZVI pretreatment and contact time
 It appears that the optimal pH to minimize iron dissolution from ZVI is 7



Arsenic Removals by ZVI amended precoat filtration Task II




Dissolved Iron Concentrations Task II

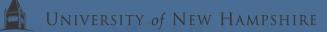


min (1), air flow=3L/M. **b**: Cl_2 , 22min, air flow=3L/min (2). **c**: Cl_2 , 22min (3), air flow=8L/min.

Take Home Message

 ZVI amended precoat filtration is an effective treatment for the removal of arsenic

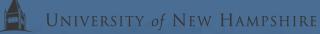
- The pH and ORP of the ZVI pretreatment are important considerations because of the possibility of iron dissolution: pH7
 Body feed rate may need to be adjusted to
 - minimize head loss development



Conclusions

- Oxidation reduction potential (ORP) exerts a strong influence on arsenic removals by ZVI, with high removals occurring at elevated ORP values
- The influence exerted by pH on arsenic removals by ZVI is drastically reduced at pH values 5-8 if sufficient pretreatment time is allowed for the creation of sorption sites
- ZVI amended precoat filtration is an effective treatment for the removal of arsenic but close attention needs to be paid to conditions as they relate to iron dissolution
- The pH and ORP of the ZVI pretreatment are important considerations because of the possibility of iron dissolution: need tighter controls
- When using pretreated ZVI to amend precoat filtration for the removal of arsenic, body feed rate may need to be adjusted to minimize head loss development

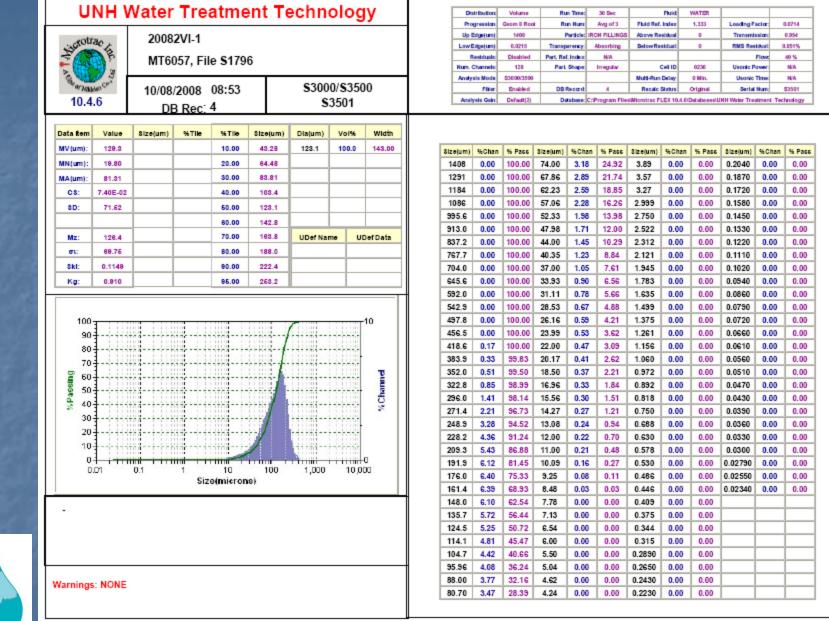
Questions?



EPA weight-of-evidence classification for carcinogenicity

Group	Description
A B1	Human carcinogen
B1	Probable human carcinogen, limited human data available
B2	Probable human carcinogen, sufficient evidence in animals
大学力学的	and inadequate or no evidence in humans
С	Possible human carcinogen
C D E	Not classifiable as to human carcinogenicity
E	Evidence of noncarcinogenicity for humans

Source: Hazardous Waste Management, LeGrega



Recommendations for Future Research

- Investigate the influence of different ZVI pretreatment pH and ORP values on the removal of arsenic and dissolution of iron.
- Investigate the influence of different ZVI pretreatment oxidants on the removal of arsenic and dissolution of iron.

Investigate the influence of different source water pH values on the removal of arsenic and dissolution of iron.
 Investigate the influence to ZVI pretreatment time on the removal of arsenic and dissolution of iron.

	ZVI1 mg/kg	ZVI2 (mg/kg)	AVERAGE	STANDARD DEVIATION
Ag 328.068	0.95	0.91	0.93	0.03
AI 308.215	178.78	299.18	238.98	85.14
As 193.696	40.68	45.54	43.11	3.44
Ba 455.403	25.47	40.17	32.82	10.39
Be 313.107	BDL	BDL		
Ca 317.933	434.42	654.13	544.28	155.35
Cd 226.502	51.30	60.04	55.67	6.18
Co 228.615	29.87	34.47	32.17	3.25
Cr 267.716	706.38	766.24	736.31	42.33
Cu 324.754	1641.83	1972.05	1806.94	233.50
Fe 259.837	917682.00	1255302.50	1086492.25	238733.75
K 766.491	38.91	63.10	51.00	17.10
Mg 279.800	217.46	263.90	240.68	32.84
Mn 257.610	3539.13	4972.68	4255.90	1013.67
Na 588.995			0.00	
Ni 231.604	289.86	307.50	298.68	12.47
Pb 220.353	29.09	41.95	35.52	9.09
S 181.972	521.63	520.57	521.10	0.74
Sb 206.834	26.14	27.79	26.96	1.16
Se 196.026	BDL	BDL		
TI 190.794	BDL	BDL		
V 292.401	130.06	149.14	139.60	13.49
Zn 213.857	99.66	118.48	109.07	13.31
Total Mass	925683.62	1265640.33		
Percentage	0.93	1.27	109.57	

