Section 1: Purpose

The purpose of this document is to outline the University of New Hampshire (UNH) Institutional Biosafety Committee (IBC) procedures to ensure compliance and safe practices for biological material use throughout the university.

As a condition for the National Institutes of Health (NIH) funding of recombinant DNA research, institutions shall ensure that such research conducted at or sponsored by the institution, irrespective of the source of funding, shall comply with the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (the Guidelines). The Guidelines require an Institutional Biosafety Committee (IBC) consisting of a minimum of five members that collectively have experience and expertise in recombinant DNA technology and the capability to assess the safety of recombinant DNA research and to identify any potential risk to public health or the environment. At least two of the committee members shall not be affiliated with the institution (apart from their membership on the Institutional Biosafety Committee) and who represent the interest of the surrounding community with respect to health and protection of the environment. To this end, the UNH IBC reviews, approves, and oversees projects in accordance with the responsibilities set forth in the Guidelines and in the institutional policy written here. The IBC’s responsibilities need not be restricted to recombinant DNA and synthetic nucleic acid research.

Section 2: Definitions

Biological Materials

For the purposes of the UNH IBC Procedures, biological materials are defined as any biologically derived material that originated from living organisms. This includes plants, animals and microbes and all materials derived from these materials, including but not limited to: tissues, fluids, cells, and parts of cells. It also includes media that contain or may contain living organisms such as environmental samples like soil, water, manure, milk, etc.

Biohazardous Materials

Biohazardous materials are defined as infectious agents, or biological materials which are known to be, or are suspected to be hazardous to humans, animals, plants and other forms of life. They include known pathogens such as bacteria and their plasmids and phages, viruses, fungi, mycoplasmas, and parasites; human and non-human primate tissues, body fluids, blood, blood products and cell lines; animal remains and laboratory animals, including insects that may harbor zoonotic pathogens. Recombinant DNA, materials that have been genetically manipulated and biologically active toxins are also included.
Biohazardous materials are classified according to risk levels and through a risk assessment are placed into appropriate containment levels. Biological materials that some may not consider biohazardous may be regulated, so careful consideration must be given to all work with biological materials. There are four risk levels, called Risk Groups (RGs), and pathogens are classified according to their relative pathogenicity for healthy adult humans. The following are the NIH definitions of the four Risk Group levels:

- **Risk Group 1 (RG1)** agents are not associated with disease in healthy adult humans.
- **Risk Group 2 (RG2)** agents are associated with human disease which is rarely serious and for which preventive or therapeutic interventions are often available.
- **Risk Group 3 (RG3)** agents are associated with serious or lethal human disease for which preventive or therapeutic interventions may be available.
- **Risk Group 4 (RG4)** agents are likely to cause serious or lethal human disease for which preventive or therapeutic interventions are not usually available.

NIH assigns Risk Group ratings to various pathogens in Appendix B of the Guidelines.

Recombinant DNA

In the context of the NIH Guidelines, recombinant or synthetic nucleic acid molecules are defined as:

(i) recombinant nucleic acid molecules,
(ii) synthetic nucleic acid molecules, including those that are chemically or otherwise modified but can base pair with naturally occurring nucleic acid molecules, and
(iii) cells, organisms, and viruses containing such molecules.”

Synthetic DNA segments which are likely to yield a potentially harmful polynucleotide or polypeptide (e.g., a toxin or a pharmacologically active agent) are considered as equivalent to their natural DNA counterpart. If the synthetic DNA segment is not expressed in vivo as a biologically active polynucleotide or polypeptide product, it is exempt from the NIH Guidelines.

Genomic DNA of plants and bacteria that have acquired a transposable element, even if the latter was donated from a recombinant vector no longer present, are not subject to the NIH Guidelines unless the transposon itself contains recombinant DNA.

Section 3: The Institutional Biosafety Committee (IBC)

The IBC’s Mission

The charge of the IBC is to assure the safe acquisition, use and disposal of all biohazardous materials at the University of New Hampshire. It is the responsibility of the Committee to establish appropriate health and safety policies in accordance with federal regulations and guidelines that cover biological safety and evaluate research, teaching and service provided at UNH for biological safety considerations. The IBC, in conjunction with the Biological Safety Officer, regulates biological materials used in research, teaching and service operations at the University.

UNH acknowledges its responsibility to provide a program for the handling, storage and disposal of biohazardous materials, to provide emergency response for incidents involving
biohazardous materials, and to educate the UNH community about the safe use of biohazardous materials in research, teaching, and service activities.

Membership

The UNH IBC size and composition shall be large enough to represent the spectrum of biohazardous material and recombinant DNA/synthetic nucleic acid users across UNH. As indicated by the Guidelines, the committee shall consist of no fewer than five full members, two of whom are community members and will include specialists in the scientific fields’ representative of work at UNH. Specialists in plants, animals, human gene transfer and infectious diseases will be represented on the committee, either as full members or as ad hoc members.

In addition, the Director of Environmental Health and Safety will be designated as an ex-officio voting member. A representative of Sponsored Program Administration is designated as an ex-officio non-voting member.

The Senior Vice Provost for Research appoints IBC members for a renewable term of three years. Terms of appointment are staggered in a manner such that one-third of the committee is appointed each year.

Authority

The IBC reports to the Senior Vice Provost for Research on matters related to the use of biohazardous materials at UNH. Specific tasks include:

1. Ensuring UNH compliance with:
 a. All federal, state and local regulations;
 b. Procedures and principles relating to the prevention and/or control of infectious diseases, including strict adherence to the most recent version of the CDC/NIH publication *Biosafety in Microbiological and Biomedical Laboratories* (BMBL); and,
 c. The procurement, storage, use and disposal of biohazardous materials used in UNH research, teaching, and service facilities.
2. Certifying investigators and instructors, their laboratories and/or their practices for work at appropriate biological safety levels.
3. Overseeing the development and maintenance of written biohazard safety/infectious disease control plans that minimize exposures for all affected personnel through the use of proper engineering controls and work practices; to make the plan available to the institutional community; to recommend updates to the plan, as necessary. Additionally, overseeing the development and implementation of educational programs related to infectious diseases and biohazard safety.
4. Following the National Institutes of Health (NIH) protocol and notification procedure for individuals exposed to recombinant DNA, synthetic nucleic acids, or regulated pathogens.
5. Identifying tasks that carry the risk for transmission and the occupational groups involved.
6. Reviewing instances of potentially infectious disease outbreaks related to research, teaching and service activities that the committee oversees.
7. Recommending to the UNH Environmental Health and Safety Committee (EHSC) policies and procedures to protect the health and safety of all faculty, staff, students, and visitors at UNH.
Roles and Responsibilities

IBC
The IBC must fulfill all aspects of the committee’s mission. IBC procedures will be reviewed annually, or as necessary. The IBC assumes the responsibility for ensuring biological safety at UNH.

IBC Chair
The IBC members elect the Chair from within the membership of the IBC for a term of three years. The Chair has responsibilities as follows:
1. Manage the quarterly meetings of the IBC.
2. Work to ensure that the Biological Safety Officer (BSO) has the backing for and is implementing the directives of the IBC.
3. Responsible for ensuring that IBC members are appropriately trained.
4. If necessary, provide administrative approval for projects that require IBC approval prior to the next scheduled IBC meeting.
5. For registrations that do not require full IBC approval, review the use of biological materials at UNH with the BSO and evaluate them in terms of the criteria for approval.

IBC Vice-Chair
The IBC members elect the Vice Chair from within the membership of the IBC for a term of three years. Upon completion of the Chair’s three-year term, the Vice Chair will become the Chair for a term of three years and a new Vice Chair will be elected for a term of three years. In the absence of the Chair, the Vice Chair has the responsibilities of the Chair.

Principal Investigator and Instructor (PI)
On behalf of the institution, the Principal Investigator and/or Principal Instructor are responsible for full compliance with the NIH Guidelines, the latest version of the CDC/NIH publication “Biosafety in Microbiological and Biomedical Laboratories” (BMBL), and this procedural document, when using biohazardous materials including recombinant DNA. UNH faculty, including emeriti, and staff members with appropriate authority, access to facilities and resources, and accountability may accept responsibility for a registered protocol and serve as a principal investigator/instructor. Students, including graduate students and teaching assistants, cannot serve as principal investigators/instructors.

As part of their general responsibilities, the Principal Investigator or Instructor shall:
1. Be adequately trained in good microbiological techniques;
2. Make an initial determination of the required levels of physical and biological containment in accordance with the NIH Guidelines and BMBL;
3. Select appropriate microbiological practices and laboratory techniques to be used for the biohazards and rDNA/synthetic nucleic acid molecules in use;
4. Submit the initial protocol and any subsequent changes to the Institutional Biosafety Committee for review and approval or disapproval;
5. Initiate or modify no recombinant DNA/synthetic acid molecule or biohazardous work which requires Institutional Biosafety Committee approval prior to initiation until that proposed modification thereof has been approved by the Institutional Biosafety Committee and has met all other requirements of the NIH Guidelines and BMBL;
6. Ensure that the personnel working on the protocol are qualified and up-to-date on good microbiological practices, safety training and specialized training, as appropriate, for the work;
7. Report any significant problems, violations of the NIH Guidelines, or any significant accidents and illnesses to the Biological Safety Officer, Institutional Biosafety Committee, NIH/OBA, and other appropriate authorities (if applicable) within 30 days.
8. Report any new information bearing on the NIH Guidelines to the Institutional Biosafety Committee and to NIH OBA;
9. Adhere to Institutional Biosafety Committee approved emergency plans for handling accidental spills and personnel contamination;
10. Comply with shipping requirements for recombinant or synthetic nucleic acid molecules;
11. Remain in communication with the Biological Safety Officer and the Institutional Biosafety Committee throughout the conduct of the project.

A Principal Investigator engaged in human gene transfer research may delegate to another party, the reporting functions set forth in the Guidelines, with written notification to the NIH OBA of the delegation and of the name(s), address, telephone, and fax numbers of the contact. The Principal Investigator is responsible for ensuring that the reporting requirements are fulfilled and will be held accountable for any reporting lapses.

Biological Safety/Security Officer (BSO)

The Biological Safety/Security Officer’s duties include, but are not be limited to:
1. Performing an initial risk assessment for all biohazardous work done at UNH, of which the BSO becomes aware through Biological Material Registrations;
2. Periodic inspections to ensure that laboratory standards are rigorously followed;
3. Reporting to the Institutional Biosafety Committee and the institution any significant problems, violations of the NIH Guidelines, and any significant biosafety related accidents or illnesses of which the Biological Safety Officer becomes aware unless the Biological Safety Officer determines that a report has already been filed by the Principal Investigator or Instructor;
4. Developing emergency plans for handling accidental spills and personnel contamination and investigating laboratory accidents involving recombinant DNA and other biohazardous materials;
5. Providing advice on laboratory security;
6. Providing technical advice to Principal Investigators, Instructors and the Institutional Biosafety Committee on safety procedures;
7. Keeping department chairpersons, principal investigators, instructors and other academic and administrative officers advised of changes in rules and recommendations of various government agencies concerned with biological safety;
8. Maintaining records of meeting minutes, protocol reviews, and other documents related to use of biological materials at UNH and the IBC’s work;
9. Serve as a liaison with the NIH for IBC duties;
10. Serve as a liaison with CDC, State of New Hampshire Department of Health and Human Services, and other regulatory agencies in matters of registration, licensing and biohazard safety.
Full Committee Members

The entire IBC committee is responsible for:

1. Reviewing protocols and evaluating them in terms of the criteria for approval.
2. Reviewing and prescribing special conditions, requirements, and restrictions that may be necessary for safe handling of biohazardous materials. This includes recommending and initiating medical surveillance or protocol review by a medical professional, as necessary, for the work being proposed. For example, the IBC may require students, staff and faculty to pass an oral or written examination, worker physical examinations (e.g. blood test, urine test, tuberculin skin test, respiratory protection, required vaccinations, etc.), upgrading of facilities (biological safety cabinets, hoods, autoclaves, etc.), special designation of areas of use within the laboratory, posting of additional caution signs, use of special disposal methods, use of special handling procedures, and special procedures to be followed after contamination events or incidents.
3. Setting containment levels as specified in CDC and NIH guidelines and based on a complete risk assessment.
4. Withholding authorization of any studies not explicitly covered by CDC/NIH guidelines until CDC/NIH establishes the containment requirements.
5. Receiving and reviewing periodic and/or urgent reports from the Biological Safety Officer (BSO) regarding:
 - Exposures of individuals to biohazardous materials;
 - Loss or theft of biohazardous materials;
 - Status of certifications of biological safety cabinets;
 - Status of certifications of autoclaves;
 - Records of biohazardous waste disposal; and
 - Records of Select Agent purchase/transfer.
6. Reporting any problems, violations, accidents, or illnesses to the EHSC, CDC, NIH, and other appropriate entities.
7. Recommending and/or initiating remedial actions when safe procedures are not followed under an authorized project or when procedures are not in compliance with government regulations or the UNH Laboratory Safety Plan. If necessary, this may involve the termination of authorizations or confiscation of materials. The IBC will re-authorize operations when activities are performed in a manner acceptable to the IBC and the Office of Environmental Health and Safety (OEHS).

Ad Hoc Committee Members

The IBC may need to utilize ad hoc consultants and specialists when necessary to review protocols requiring specific expertise. These ad hoc members are not full members of the committee and therefore are considered non-voting members.

Office of Environmental Health and Safety

The Office of Environmental Health & Safety (OEHS) implements IBC approved programs.

Administrative Procedures

Quorum

A quorum is necessary for all IBC approvals. A quorum is greater than 50% of the Committee voting membership of which at least one member present must be a community representative. All matters requiring a vote by the IBC requires a simple majority of the quorum.
Approvals
Approval is granted for the specific conditions in the original application and is not transferrable to a new Principal Investigator. For instructional labs, approval is granted for biohazards in use, so only if the curriculum changes or biohazardous materials are added to a curriculum is a new application necessary. Principal Investigators and Instructors are required to abide by all terms and conditions listed in this IBC procedure document and in the approval letter for their project. If a new PI must be designated for any project, a new application must be filed with the IBC. Biohazardous material may not be added, changed or used in any location other than that originally approved by the IBC. Minor updates such as personnel changes are allowed with notification to the BSO on the annual update form. It is the Principal Investigator and Instructor’s responsibility to coordinate appropriate training for personnel on their project. Room changes will need to undergo a new risk assessment by the BSO. If biohazardous materials change or the technique/procedure is changed, a new application form must be filed.

Renewals
Two months prior to expiration, the Biological Safety Officer will issue a reminder of the pending expiration. At that time, the principal investigator or instructor must specify whether the program is to continue and will need to submit a new application form for approval.

Appeals
Appeals to decisions made by the IBC on project applications may be made in writing and submitted to the committee Chair within 30 days of the decision notification.

Conflict of Interest
No member of the IBC may be involved in the review or approval of a project in which he/she has been, is, or expects to be engaged or in which he/she has professional or financial interest, except to provide information requested by the IBC. The IBC member must abstain from voting and remove him/herself from the room when the vote takes place.

Meeting Attendance
IBC members are expected to attend all quarterly meetings. Individuals that cannot attend an IBC meeting due to sabbatical or other reasons must appoint a replacement to serve during their absence. If a replacement cannot be found, the member will be temporarily removed from the IBC (during their absence) and will not be considered a member of the IBC when determining if a quorum is present. The individual is expected to return to the IBC upon their return to the University.

Meeting Frequency
The Committee shall meet four times per year, or as needed.

Removal of a Member
Removal of a member from the IBC typically requires documented and substantiated "just cause" that demonstrates the member to be unfit or unable to serve on the IBC. "Just cause" for removal may include, but is not limited to, lack of regular attendance at meetings, a finding of misconduct, or an unresolved conflict of interest. Members may also be removed to allow for fresh perspectives on the committee. The ultimate decision to remove a member is made by the Senior Vice Provost for Research.
Section 4: Registering Biological Materials

All work with biological materials must be registered with the Biological Safety Officer in the Office of Environmental Health and Safety. Personnel can access the biological safety page at http://unh.edu/research/biological-safety. A one page Biological Materials Registration form can be downloaded and sent to the BSO for review.

Work that is determined to be biohazardous must be registered with the IBC. IBC registration forms can be downloaded from the biological safety page. All forms are submitted to the BSO and a risk assessment will be scheduled. Once an assessment is completed, the BSO will notify the PI of what the next course of action is for IBC approval, based on the criteria below.

Level 1 Review: Full IBC Review and Approval Prior to the Initiation of Work

Protocols included in the following categories must have IBC approval prior to the initiation of work.

a. Section III-A of the NIH Guidelines: Experiments that Require Institutional Biosafety Committee Approval, RAC Review, and NIH Director Approval Before Initiation
b. Section III-B of the NIH Guidelines: Experiments That Require NIH/OBA and Institutional Biosafety Committee Approval Before Initiation
c. Section III-C of the NIH Guidelines: Experiments that Require Institutional Biosafety Committee and Institutional Review Board Approvals and RAC Review Before Research Participant Enrollment
d. Section III-D of the NIH Guidelines: Experiments that Require Institutional Biosafety Committee Approval Before Initiation
e. Section III-E of the NIH Guidelines: Experiments that Require Institutional Biosafety Committee Notice Simultaneous with Initiation
 a. Section III-E-1: Experiments Involving the Formation of Recombinant or Synthetic Nucleic Acid Molecules Containing No More than Two-Thirds of the Genome of any Eukaryotic Virus (those not included in other sections)
b. Section III-E-2: Experiments Involving Whole Plants (those not included in other sections)
c. Section III-E-3: Experiments Involving Transgenic Rodents (those not included in other sections)
f. Section III-F of the NIH Guidelines: Exempt Experiments
 a. Section III-F-1: Those synthetic nucleic acids that: (1) Can neither replicate nor generate nucleic acids that can replicate in any living cell (e.g., oligonucleotides or other synthetic nucleic acids that do not contain an origin of replication or contain elements known to interact with either DNA or RNA polymerase), and (2) are not designed to integrate into DNA, and (3) do not produce a toxin that is lethal for vertebrates at an LD50 of less than 100 nanograms per kilogram body weight.
b. Section III-F-2: Those that are not in organisms, cells, or viruses and that have not been modified or manipulated (e.g., encapsulated into synthetic or natural vehicles) to render them capable of penetrating cellular membranes.
c. Section III-F-3: Those that consist solely of the exact recombinant or synthetic nucleic acid sequence from a single source that exists contemporaneously in nature.
d. Section III-F-4: Those that consist entirely of nucleic acids from a prokaryotic host including its indigenous plasmids or viruses when propagated only in that host (or a closely
related strain of the same species), or when transferred to another host by well-established physiological means.

e. Section III-F-5: Those that consist entirely of nucleic acids from a eukaryotic host including its chloroplasts, mitochondria, or plasmids (but excluding viruses) when propagated only in that host (or a closely related strain of the same species).

f. Section III-F-6: Those that consist entirely of DNA segments from different species that exchange DNA by known physiological processes, though one or more of the segments may be a synthetic equivalent. Appendices A-I through A-VI of the Guidelines list the natural exchangers that are exempt from the NIH Guidelines [http://oba.od.nih.gov/oba/rac/Guidelines/APPENDIX_A.html].

g. Section III-F-7: Those genomic DNA molecules that have acquired a transposable element, provided the transposable element does not contain any recombinant and/or synthetic DNA.

h. Section III-F-8: Those that do not present a significant risk to health or the environment, as determined by the NIH Director, with the advice of the RAC, and following appropriate notice and opportunity for public comment. Appendix C of the Guidelines lists classes of experiments which are exempt from the NIH Guidelines [http://oba.od.nih.gov/oba/rac/Guidelines/APPENDIX_C.html].

g. Work with RG3 agents

h. Work with select agents

i. Work with large scale RG1, RG2, RG3 agents

j. Work with biological toxins

Full text of the NIH Guidelines can be found at [http://oba.od.nih.gov/rdna/obaguidelines_oba.html], if clarification on any section is needed. It is the PI’s responsibility to determine what section of the Guidelines their work falls into. The Biological Safety Officer can offer assistance in determining the section and will confirm the section when the risk assessment is completed.

It is strongly recommended that PI’s present their proposals to the committee in person during the quarterly IBC meeting to answer any technical questions that may come up. Following the IBC meeting, the BSO will draft an approval letter with the terms and conditions of the approval, including an expiration date of up to 3 years for research and commercial registrations or 5 years for teaching and diagnostic registrations. The approval letter will be sent to the PI/Instructor. A copy of the approval letter for teaching registrations will also be sent to the Dean associated with the course and to the director of the NHVDL for registrations associated with diagnostic procedures. The BSO will require periodic updates on approved level 1 projects.

Level 2 Review: Notification to the IBC

Protocols included in this section require notification to the IBC but full IBC approval is not necessary for the work. Approval for projects in this category will be granted by the IBC Chair or designee and Biological Safety Officer.

1. Research, teaching and service labs using RG2 agents or materials known to harbor RG2 agents (Note: RG3 agents are prohibited in teaching labs.)

2. Research, teaching and service involving potentially infectious materials, including, but not limited to:
a. unfixed tissue of human or animal origin
b. animal and human cell lines
c. all bodily fluids from animals or humans
d. insect vectors of disease, such as ticks, fleas, mosquitoes, biting flies, etc.
e. environmental samples that may harbor pathogenic or zoonotic agents, but are not known to harbor such agents

Following approval, the BSO will draft an approval letter with the terms and conditions of the approval, including an expiration date of up to 3 years for research and commercial registrations or 5 years for teaching and diagnostic registrations. The approval letter will be sent to the PI/Instructor. A copy of the approval letter for teaching registrations will also be sent to the Dean associated with the course and to the director of the NHVDL for registrations associated with diagnostic procedures. The BSO will require periodic updates on all Level 2 projects.

A summary of the registrations in this category will be given by the BSO to the IBC each quarter, when applicable.

Section 5: Risk Assessments
In order to determine if a biological material is a biohazardous material, and what level containment the biohazardous material requires for safe work and storage, a laboratory biological risk assessment must be completed.

A biological risk assessment will be performed by the Biological Safety Officer for all biohazardous work. Assessments for work that falls under the purview of the IBC must be completed prior to commencing any work, even for work that falls under the category “Level 2 Review: Notification to the IBC”.

The Biological Safety Officer, in conjunction with the PI or Instructor, will assess:

- Biological materials
- Work procedures
- Personnel qualifications
- Facility set up and equipment

The assessment will determine a biological safety level appropriate for the work. Biosafety level incorporates the facilities, equipment and practices that are suitable for the work.

During a risk assessment, if insufficient data is available to identify risk, the default will always be a more conservative approach to working safely with biological materials. An example of this is that if deliberate work with an infectious agent is not planned, but the materials may be contaminated with an infectious agent, the default will be to work at the biological safety level appropriate for the agents that may be present.
Section 6: Biohazardous Waste Requirements
Biohazardous waste generated at UNH must be treated by either chemical disinfection or physical inactivation as soon as possible after generation. Personnel are required to follow the specific guidelines in the UNH Biohazardous Waste Procedures document when handling biohazardous waste.

Section 7: Training Requirements
It is the responsibility of the Principal Investigator and/or Instructor to ensure all personnel working with biohazardous materials under their guidance are trained appropriately for the work they will be doing. The PI is encouraged to contact OEHS and speak with the Biological Safety Officer regarding the type of training offered through the Environmental Health and Safety department.

Standard Microbiological Practices
All personnel working with biohazardous materials must be proficient in standard microbiological practices as defined in the BMBL.

BSL-1
Personnel working with rDNA or biohazardous materials determined to require BSL-1 containment must take the BSL-1 training offered through the OEHS Blackboard group, or request in-person BSL-1 training from OEHS.

BSL-2
Personnel working with rDNA or biohazardous materials determined to require BSL-2 containment must take the BSL-2 training offered through the OEHS Blackboard group, or request in person BSL-2 training from OEHS. Individuals must also be trained on BSL-2 operating procedures specific to the lab they are working in.

Bloodborne Pathogens
Personnel working with human or non-human primate source materials, including blood, blood components, tissue, bodily fluids, cells or cell lines must complete the OEHS Blackboard training for Bloodborne Pathogens, or request an in-person training given by the Biological Safety Officer.

Disinfection of Waste in the Autoclave
All personnel responsible for autoclaving biohazardous waste must complete training for proper use of the autoclave. This training can be provided and documented by the PI, or be taken via on-line Blackboard training through OEHS.

Section 8: Emergency Response
Spills, releases to the environment, and biohazardous material security breaches must be reported to the Principal Investigator and/or Instructor, the Biological Safety Officer, and the IBC Chair immediately.
Section 9: Incidents/Accidents

If an individual working on a project is injured or exposed/potentially exposed to a biohazardous material, the incident must be reported to the Principal Investigator, Instructor and Biological Safety Officer immediately.

Notification is required so that follow up can be completed for possible exposures. If personnel are exposed to recombinant materials, reporting to the NIH may be required and must be evaluated by the PI and BSO. For sharps exposures, a sharps injury log must be completed by the BSO per the recordkeeping requirements for the Occupational Safety and Health Administration (OSHA).

Appendix 1 contains an incident report form to be completed by any personnel who may have been exposed to biohazardous materials.
Appendix 1: Biohazardous Material Incident Report

BIOLOGICAL MATERIAL INCIDENT FORM

This form is to be filled out for:

- Overt exposures to biological materials such as injection, splashes to the eyes, nose or mouth, or aerosol
 exposure.
- Potential exposures to biological materials such as through spill cleanup, or containment failure while
 working with an agent and process that might generate aerosols.
- All biological material spills.

Incident Date: ___________________ Estimated Incident Time: ___________________

Personnel Involved: __

Contact information (phone and e-mail): ______________________________________

Witnesses (if any): ___

Location (building and room #): ___

Equipment Involved: ___

Biological materials, Chemicals or Fluids Involved:
(specify whether human source materials were involved, infectious agents, rDNA molecules or a gene
product, biological toxin, etc.)

Description of Incident:
(specify whether it was a needle stick, splash to eyes, nose or mouth, skin exposure, or biological material
spill)

Cause of Incident: __

Exposure/Injury That Occurred: __
Medical Treatment Details (if any): __

Description of Immediate Response (first aid &/or cleanup & disposal methods): ____________

Persons Involved in First Aid/Cleanup: __

Recommendations for Prevention of Incident: _______________________________________

__

Follow-up and Corrective Actions: __

__

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected Individual:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisor:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHS:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>