Gonghu Li

Assistant Professor

Physical Chemistry
Materials Chemistry
Department of Chemistry
University of New Hampshire
Durham, NH 03824-3598 U.S.A.
603-862-0607
gonghu.li@unh.edu

Education and Achievements

  • B.S., 1997, Hubei Normal University, China
  • M.S., 2000, Chinese Academy of Sciences, China
  • Ph.D., 2005, University of Iowa
  • Postdoctoral Fellow, 2005-2007, Northwestern University
  • Postdoctoral Associate, 2007-2009, Yale University
  • Assistant Professor, 2009-current, University of New Hampshire

Research Interests

Functional Composite Materials for Energy and Environmental Applications

  • Surface Chemistry and Catalysis/Photocatalysis
  • Solar Energy Conversion
  • Nanoscience and Materials Chemistry
  • Chemistry and Sustainablility

Current Research Interests

An urgent challenge faced by the world is to find viable solutions to meet our energy needs while maintaining the quality of our environment. The discovery of new materials with improved properties will play a pivotal role in achieving a sustainable future. At UNH, we are interested in utilizing the principles of catalysis and nanoscience to develop functional nanocomposite materials for energy and environmental applications.

Surface molecular catalysis deals with the post-synthetic derivatization of solid materials with well-defined molecular catalysts. Such "supramolecular chemistry" represents a unique approach that brings together the robustness of solid surfaces and the molecular understanding of catalysis. Crystalline aluminosilicates such as zeolites are excellent supports for molecular catalysts. Our current research involves the synthesis of nanozeolites with particle sizes less than 100 nm, followed by surface functionalization of nanozeolites with molecular catalysts. The functionalized materials will be characterized with a variety of techniques including X -ray diffraction, microscopy (SEM and TEM), UV-visible, FT-IR, and EPR spectroscopy.

One potential application of our functional nanocomposite materials is in the field of artificial photosynthesis (Scheme 1). Solar energy remains the largest unexploited renewable energy resource. In our research, transition metal (Ru, Re, Ni, Co, etc.) complexes will be synthesized and supported on nanozeolites. The surface molecular catalysts will be applied to solar fuel production by reducing CO2 into CH4 and CH3OH as energy-rich fuels. Other applications of our functional materials include dye-sensitized solar cells and photochromism.

Scheme 1: Schematic representation of an artificial photosynthesis cell (C: light−harvesting chromophore; Ox: water−oxidation catalyst; Red: CO2−reduction catalyst).

 

Publications

Liu, C.; Dubois, K. D.; Louis, M.; Vorushilov, A.; Li, G. “Photocatalytic CO2 Reduction and Surface Immobilization of a Tricarbonyl Re(I) Complex Modified with Amide Groups,” ACS Catal. 2012 (submitted)

Dubois, K. D.; Li, G. “Innovative Photocatalysts for Solar Fuel Generation by CO2 Reduction,” in Solar Photocatalysis. Ed. Steven L. Suib,  Elsevier: Amsterdam.  2012, in press (invited contribution)

He, H.; Liu, C.; Dubois, K. D.; Jin, T.; Louis, M. E.; Li, G. “Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications,” Ind. Eng. Chem. Res. 2012, 51, 11841-11849 (invited review)

Dubois, K. D.; He, H.; Liu, C.; Vorushilov, A.; Li, G. “Covalent Attachment of a Molecular CO2-Reduction Photocatalyst to Mesoporous Silica,” J. Mol. Catal. A 2012, 363-364, 208-213

Dubois, K. D.; Petushkov, A.; Cardona, E. G.; Larsen, S. C.; Li, G. “Adsorption and Photochemical Properties of a Molecular CO2 Reduction Catalyst in Hierarchical Mesoporous ZSM-5: An In Situ FTIR Study,” J. Phys. Chem. Lett. 2012, 3, 486-492

Agarwal, J.; Johnson, R. P.; Li, G. “Reduction of CO2 on a Tricarbonyl Rhenium(I) Complex: Modeling a Catalytic Cycle,” J. Phys. Chem. A 2011, 115, 2877-2881
* One of the top 10 most read articles for Q2 2011 for J. Phys. Chem. A

McConnell, I.; Li, G.; Brudvig, G. W. “Energy Conversion in Natural and Artificial Photosynthesis,” Chem. Biol. 2010, 17, 434-447

Li, G.; Sproviero, E. M.; McNamara, W. R.; Snoeberger, R. C. I.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Reversible Visible-Light Photooxidation of an Oxomanganese Water-Oxidation Catalyst Covalently Anchored to TiO2 Nanoparticles,” J. Phys. Chem. B 2010, 114, 14214–14222

McNamara, W. R.; Snoeberger III, R. C.; Li, G.; Richter, C.; Allen, L. J.; Milot, R. L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Hydroxamate Anchors for Water-Stable Attachment to TiO2 Nanoparticles,” Energy Environ. Sci. 2009, 2, 1173-1175

Li, G.; Richter, C.; Milot, R. L.; Cai, L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Synergistic Effect Between Anatase and Rutile TiO2 Nanoparticles in Dye-Sensitized Solar Cells,” Dalton Trans. 2009, 10078-10085

Li, G.; Sproviero, E. M.; Snoeberger, R. C. I.; Iguchi, N.; Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Deposition of an Oxomanganese Water Oxidation Catalyst on TiO2 Nanoparticles: Computational Modeling, Assembly and Characterization,” Energy Environ. Sci. 2009, 2, 230-238

McNamara, W. R.; Snoeberger, R. C. I.; Li, G.; Schleicher, J. M.; Cady, C. W.; Poyatos, M.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Acetylacetonate Anchors for Robust Functionalization of TiO2 Nanoparticles with Mn(II)-Terpyridine Complexes,” J. Am. Chem. Soc. 2008, 130, 14329-14338

Li, G.; Dimitrijevic, N.; Chen, L.; Rajh, T.; Gray, K. A. “Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites,” J. Phys. Chem. C 2008, 112, 19040-19044

Li, G.; Dimitrijevic, N.; Chen, L.; Nichols, J.; Rajh, T.; Gray, K. A. “The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalyt Activity of TiO2 Nanocomposites,” J. Am. Chem. Soc. 2008, 130, 5402-5403

Li, G.; Ciston, S.; Saponjic, Z.; Chen, L.; Dimitrijevic, N.; Rajh, T.; Gray, K. A. “Synthesizing Mixed Phase TiO2 Nanocomposites Using a Hydrothermal Method for Photooxidation and Photoreduction Applications,” J. Catal. 2008, 253, 105-110


Updated: 3/4/14