Elastic deformation of composite cylinders with cylindrically orthotropic layers

Igor Tsukrov*, Borys Drach

Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA

1. Introduction

Elasticity solutions for layered fibers and cylindrical inclusions are of interest in several important areas of mechanics of materials including composites reinforced by fibers with imperfect or modified interface modeled as a certain interphase zone (as in Hashin, 2002), nanowires in semiconductors (see references in Shokro-lahi-Zadeh and Shodja, 2008), composites with coated fibers (see, for example, Honjo, 2006), and carbon/carbon composites produced by chemical vapor infiltration (Reznik et al., 2003; Tsukrov et al., 2005). The ability to quantify deformations and stresses in interphase regions increases in importance with introduction and development of nanoreinforced materials characterized by several orders of magnitude increase in interface surface to volume ratio as compared to conventional composites.

Most of the available results dealing with interphase zones in composite materials are devoted to spherical and ellipsoidal heterogeneities, see Lutz and Zimmerman (1996, 2005), Garboczi and Bentz (1997), Wang and Jasiuk (1998), Sevostianov and Kachanov (2007), and references cited therein.

For cylindrical inclusions, i.e. fibers, the important solutions relevant to prediction of the effective elastic and thermoelastic properties can be found in Hashin and Rosen (1964), Walpole (1969), Christensen and Lo (1979), and later works of Avery and Herakovich (1986), Kanaun and Kudriavtseva (1989), Hashin (1990, 2002), Chen et al. (1990), and Hervé and Zaoui (1995). In particular, for anisotropic constituents, Avery and Herakovich (1986) derived an analytical solution for a cylindrically orthotropic fiber in an isotropic matrix subjected to thermal stresses (traction-free axisymmetric problem), and investigated the influence of fiber orthotropy on stress concentrations. Chen et al. (1990) considered thermomechanical loading of a cylindrically orthotropic fiber surrounded by transversely isotropic coating and placed in an infinite transversely isotropic matrix. For this three-phase material system, they produced solutions for the remotely applied axisymmetric, transverse shear and longitudinal shear loadings. The solutions were then used to predict the effective thermoelastic properties of the composites reinforced by coated fibers (Chen et al., 1990; Benveniste et al., 1991). In approximately the same time, Hashin (1990) analyzed a composite cylinder consisting of a fiber surrounded by a finite-thickness layer with both materials being cylindrically orthotropic. He solved the corresponding elasticity and conductivity problems utilizing homogeneous boundary conditions on the external surfaces, and produced predictions of the effective transversely isotropic elastic and conductive properties of the composite.

Recently, Honjo (2006) calculated thermal stresses and effective material parameters in the ceramic matrix composites reinforced by fibers coated with a layer of pyrolytic carbon. By considering different levels of anisotropy, he demonstrated the importance of taking into account the cylindrically-orthotropic nature of interfacial carbon coating. Shokro-lahi-Zadeh and Shodja (2008) investigated elastic fields in the anisotropic layered cylinders embedded in an unbounded elastic isotropic medium. They utilized their modification of the equivalent inclusion method to produce methodology suitable for general far-field loading. Theotokoglou and Stampouloglou (2008) considered in-plane axisymmetric geometries. They produced mathematical formulation for a radially inhomogeneous cylindrically anisotropic material, and derived solutions for certain distributions of Young's modulus in the isotropic case.

Several publications have been devoted to hollow elastic tubes subjected to various boundary conditions. Gal and Dvorkin (1995) considered a plane strain problem for a cylindrically anisotropic tube subjected to the inside and outside pressure (a generalization
of the classical Lamé problem). One of their interesting observations was that, differently from the isotropic case, the anisotropic solution does not converge to any asymptotic value as the outer radius increases. Tarn and Wang (2001) provided an efficient approach to finding deformations and stresses in laminated anisotropic tubes subjected to extension, torsion, pressure, and bending. They proposed using stress components multiplied by radius as new state variables, and utilized the transfer matrix procedure to transmit the state vector to the outer surface where boundary conditions can be applied. Chatzigeorgiou et al. (2008) investigated effective elastic properties of an anisotropic hollow layered tube with discontinuous elastic coefficients and produced predictions of effective response under torsion and axisymmetric loading. Their paper also includes the most recent bibliography on mechanics of laminated (with isotropic or anisotropic layers) hollow tubes.

Only two of the above-mentioned papers deal with the situation when both the inner cylinder (fiber) and the surrounding material (matrix) are non-isotropic. However, the solutions of Hashin (1990) are limited to only one layer of a cylindrically-orthotropic material around fiber, while in Shokrollahi-Zadeh and Shodja (2008) the boundary conditions have to be applied at infinity. These deficiencies are addressed in the present paper which provides explicit expressions for stress and displacement fields in a multilayered composite cylinder with an arbitrary number of cylindrically orthotropic layers subjected to the boundary conditions assigned on the lateral surface of the outer cylinder of finite radius. The following basic homogeneous loading conditions are considered: axial tension/compression, transverse hydrostatic loading, transverse shear, and axial shear loadings. The material in each layer is modeled as linearly elastic; the strains are small. The general form of the solutions is chosen in the form presented in Hashin (1990). The layers are assumed to be perfectly bonded so that the transfer matrices approach described, for example, in Hervé and Zaoui (1995) can be utilized.

The mathematical formulation is given in Section 2. Sections 3–5 are devoted to axisymmetry problems, axial shear and transverse shear, respectively. In Section 6 several test problems are solved to illustrate the proposed solution procedure. The results are compared with the existing solutions, when available, to validate the approach.

2. Formulation of the problem

Let us consider a material system consisting of a cylindrically-orthotropic or transversely isotropic cylinder of radius \(R_1 \) surrounded by \((n-1)\) concentric layers \((R_{k-1} \leq r \leq R_k, \ k = 2, \ldots, n)\) where \(r, \theta, z \) are the coordinates in the cylindrical coordinate system as shown in Fig. 1. Each layer is cylindrically orthotropic so that the stress–strain relations can be presented in the following form:

\[
\begin{bmatrix}
\sigma_{rr} \\
\sigma_{r\theta}
\end{bmatrix} = \begin{bmatrix}
C_{rr} & C_{r\theta} & C_{rz} & C_{r2} & C_{r3} & 0 & 0 & 0 & 0 \\
C_{r\theta} & C_{\theta\theta} & C_{\theta z} & C_{\theta2} & C_{\theta3} & 0 & 0 & 0 & 0 \\
C_{rz} & C_{\theta z} & C_{zz} & C_{z2} & C_{z3} & 0 & 0 & 0 & 0 \\
C_{r2} & C_{\theta2} & C_{z2} & C_{22} & 0 & 0 & 0 & 0 & 0 \\
C_{r3} & C_{\theta3} & C_{z3} & 0 & C_{33} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2G_{0z} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2G_{0r} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2G_{0\theta} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2G_{0\theta}
\end{bmatrix} \begin{bmatrix}
\epsilon_{rr} \\
\epsilon_{r\theta} \\
\epsilon_{rz} \\
\epsilon_{r2} \\
\epsilon_{r3} \\
\epsilon_{zr} \\
\epsilon_{z\theta} \\
\epsilon_{z2} \\
\epsilon_{z3}
\end{bmatrix},
\]

where \(C^{(k)}_{ij}\) and \(G^{(k)}_{0j}\) are the components of the stiffness matrix of \(k\)th layer. The core cylinder \((r \leq R_1)\) is treated as the first layer. By choosing the external radius \(R_n \) to be much larger than \(R_{n-1} \), we produce a model of a layered cylinder of a finite diameter (for example, a fiber surrounded by a layered interphase region) in a cylindrically orthotropic or isotropic matrix.

The height of the cylinder is \(h \ (-h/2 \leq z \leq h/2) \). Some of the elastic solutions presented in this paper are derived for the infinitely long cylinder \((h \rightarrow \infty)\).

In the text to follow, parameters associated with a certain layer will be denoted by the layer number shown as a superscript or a subscript depending on the convenience of presentation. A special comment will be made when there is a possibility of confusion with other indices.

The layers are assumed to be perfectly bonded, so the displacements and radial components of traction are continuous through the interface between any two adjacent layers \(k\) and \((k+1)\):

\[
\begin{align*}
\sigma_{rr}^{(k)}(R_k) &= \sigma_{rr}^{(k+1)}(R_k), \\
\sigma_{r\theta}^{(k)}(R_k) &= \sigma_{r\theta}^{(k+1)}(R_k), \\
\sigma_{rz}^{(k)}(R_k) &= \sigma_{rz}^{(k+1)}(R_k), \\
\sigma_{r2}^{(k)}(R_k) &= \sigma_{r2}^{(k+1)}(R_k), \\
\sigma_{r3}^{(k)}(R_k) &= \sigma_{r3}^{(k+1)}(R_k).
\end{align*}
\]

The equilibrium equations in the absence of body forces are as follows:

\[
\begin{align*}
\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \sigma_{rr} - \sigma_{rr} &= 0, \\
\frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{r2}}{\partial z} + 2\sigma_{r\theta} &= 0, \\
\frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{rz}}{\partial \theta} + \frac{\partial \sigma_{r3}}{\partial z} + \sigma_{rz} &= 0.
\end{align*}
\]

The relations between displacements and (small) strains are

\[
\begin{align*}
e_{rr} &= \frac{\partial u_r}{\partial r}, & e_{r\theta} &= \frac{1}{2} \left(\frac{\partial u_r}{\partial r} + \frac{1}{r} \frac{\partial u_\theta}{\partial r} + \frac{u_r}{r} \right), \\
e_{r2} &= \frac{1}{2} \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_\theta}{\partial r} + \frac{u_r}{r} \right), & e_{r3} &= \frac{1}{2} \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_\theta}{\partial r} + \frac{u_r}{r} \right), \\
e_{zr} &= \frac{\partial u_z}{\partial z}, & e_{z\theta} &= \frac{1}{2} \left(\frac{\partial u_z}{\partial z} + \frac{\partial u_\theta}{\partial z} + \frac{u_z}{z} \right).
\end{align*}
\]

In the next sections, we solve the system of differential equations (1)–(4) and produce explicit expressions for stress and displacement fields in a \(n\)-layered composite cylinder with cylindrically orthotropic layers subjected to four basic loading cases: axial tension/compression, transverse hydrostatic loading, axial shear and transverse shear loadings.
3. Axial tension/compression and transverse hydrostatic loading

Consider a concentric composite cylinder subjected to the external transverse hydrostatic loading \(\sigma_r \) (tension or compression) and the prescribed axial elongation or contraction \(\varepsilon_a \). The resulting deformation will be axisymmetric: there will be no angular displacement \((u_\theta = 0) \), and the radial displacement will depend upon the radial coordinate only, i.e. \(u_r \equiv u(r) \). Substitution of Eqs. (4) and (1) into the equilibrium equation (3) yields the following differential equation for radial displacement \(u(r) \):

\[
\frac{r^2 u''}{\varepsilon_a} + \frac{u'}{r} - \frac{2}{\varepsilon_a} u + \frac{(C_{zz} - C_{\theta \theta})}{C_{rr}} r = 0,
\]

where \(\varepsilon_a = \sqrt{C_{\theta \theta}/C_{rr}} \), and material constants \(C_{rr}, C_{\theta \theta}, C_{zz} \) assume their corresponding values for each layer. The general solution of this ordinary differential equation is given, for example, in Avery and Herakovich (1986):

\[
u = A \frac{r}{b_1^{k-1}} + B \frac{b_1^{k-1}}{r} + \beta_6 r,
\]

where \(\beta_6 = \frac{C_{zz} - C_{\theta \theta}}{C_{rr}} \) and \(A \) and \(B \) are integration constants.

From the general solution (6), stress–displacement relations (4) and stress–strain relations (1) we obtain the following expressions for normal stress components:

\[
\sigma_{rr} = A \left(\frac{\partial C_{rr} + C_{\theta \theta}}{R} \right)^{k-1} + B \left(-\frac{\partial C_{rr} + C_{\theta \theta}}{R} \right)^{k-1}
\]

\[
+ \beta_6 \left(\frac{C_{rr} + C_{\theta \theta}}{R} \right) \varepsilon_a,
\]

\[
\sigma_{\theta \theta} = A \left(\frac{\partial C_{\theta \theta} + C_{zz}}{R} \right)^{k-1} + B \left(-\frac{\partial C_{\theta \theta} + C_{zz}}{R} \right)^{k-1}
\]

\[
+ \beta_6 \left(\frac{C_{\theta \theta} + C_{zz}}{R} \right) \varepsilon_a,
\]

\[
\sigma_{zz} = A \left(\frac{\partial C_{zz} + C_{rr}}{R} \right)^{k-1} + B \left(-\frac{\partial C_{zz} + C_{rr}}{R} \right)^{k-1}
\]

\[
+ \beta_6 \left(\frac{C_{zz} + C_{rr}}{R} \right) \varepsilon_a.
\]

The integration constants \(A \) and \(B \) assume different values for each layer: \(A_1, B_1, A_2, B_2, \ldots, A_n, B_n \). These values can be found from the continuity conditions (2). For axisymmetric deformation, we prescribe radial stresses and radial displacements to be continuous through the interface between \(k \) and \((k + 1) \) layers:

\[
\sigma_{rr}^{(k)}(R_k) = \sigma_{rr}^{(k+1)}(R_k),
\]

\[
u^{(k)}(R_k) = \nu^{(k+1)}(R_k).
\]

Following the influence matrix approach similar to that used in Hervé and Zaoui (1995) for isotropic constituents, we represent Eq. (8) in the matrix form:

\[
J_k(R_k) \nu_k + \beta_6 L_k = J_{k+1}(R_k) \nu_{k+1} + \beta_6 L_{k+1}, \quad k = 1, \ldots, (n - 1),
\]

where \(\nu_i = [A_i, B_i]^T \) is the vector of integration constants of an ith layer \((i = 1, \ldots, n)\), vector \(L_i \) depends on the material properties and external radius of ith layer:

\[
L_i = \left\{ \begin{array}{c}
\beta_i R_i \\
\beta_i \frac{C_{\theta \theta}^{(i)}}{R_i^{k-1}} + C_{zz}^{(i)}
\end{array} \right\},
\]

and \(J_0(r) \) is the following matrix:

\[
J_0(r) = \left(\begin{array}{c}
\frac{r^{k-1}}{r^{k-1}}, \frac{r^{k-1}}{r^{k-1}} \\
\frac{\partial C_{rr}^{(i)}}{R^{k-1}}, \frac{\partial C_{\theta \theta}^{(i)}}{R^{k-1}}
\end{array} \right)^{\lambda - 1} \left(\begin{array}{c}
\frac{\partial C_{rr}^{(i)}}{R^{k-1}}, \frac{\partial C_{\theta \theta}^{(i)}}{R^{k-1}}
\end{array} \right)^{-1}.
\]

Representation (9) allows us to construct a recurrent procedure to find all integration constants, and thus obtain the complete displacement, strain and stress fields as given by Eqs. (6), (4) and (7). The procedure is described in the text to follow.

Let us solve matrix equation (9) for the set of integration constants of the \((k + 1)\)th layer:

\[
\nu_k = \mathbf{N}^{(k+1)} \nu_k + \beta_6 \mathbf{M}^{(k+1)},
\]

where

\[
\mathbf{N}^{(k+1)} = \frac{R_k}{2 \lambda^{(k+1)} C_{zz}^{(k+1)}} \left(\begin{array}{c}
N_{11}^{(k+1)} \\
N_{12}^{(k+1)} \\
N_{21}^{(k+1)} \\
N_{22}^{(k+1)}
\end{array} \right),
\]

The explicit expression for matrix \(\mathbf{N}^{(k+1)} \) is

\[
\mathbf{N}^{(k+1)} = \frac{R_k}{2 \lambda^{(k+1)} C_{zz}^{(k+1)}} \left(\begin{array}{cc}
N_{11}^{(k+1)} & N_{12}^{(k+1)} \\
N_{21}^{(k+1)} & N_{22}^{(k+1)}
\end{array} \right).
\]

Matrix \(\mathbf{M}^{(k+1)} \) is given by:

\[
\mathbf{M}^{(k+1)} = \frac{1}{2 \lambda^{(k+1)} C_{zz}^{(k+1)}} \left(\begin{array}{c}
M_{11}^{(k+1)} \\
M_{12}^{(k+1)}
\end{array} \right),
\]

where

\[
M_{11}^{(k+1)} = \frac{R_k}{R_{k+1}} \left(\begin{array}{c}
R_k \lambda^{(k+1)} C_{\theta \theta}^{(k+1)} + C_{zz}^{(k+1)} - \beta_k \frac{C_{\theta \theta}^{(k+1)}}{R_k} + \beta_{k+1} \left(\frac{C_{\theta \theta}^{(k+1)}}{R_k} \right)
\end{array} \right),
\]

\[
M_{12}^{(k+1)} = \frac{R_k}{R_{k+1}} \left(\begin{array}{c}
R_k \lambda^{(k+1)} C_{\theta \theta}^{(k+1)} + C_{zz}^{(k+1)} - \beta_k \frac{C_{\theta \theta}^{(k+1)}}{R_k} + \beta_{k+1} \left(\frac{C_{\theta \theta}^{(k+1)}}{R_k} \right)
\end{array} \right).
\]

Formula (10) can be utilized to express the integration constants in any \((k + 1)\)th layer in terms of integration constants of the 1st layer (inner core cylinder):

\[
\nu_{k+1} = \mathbf{Q}^{(k+1)} \nu_1 + \beta_6 \mathbf{P}^{(k+1)},
\]

where

\[
\mathbf{Q}^{(k+1)} = \frac{1}{\prod_{j=1}^{k} N_{ij}^{(i)}, \mathbf{P}^{(k+1)} = \left(\begin{array}{c}
P_{11}^{(k+1)} \\
P_{12}^{(k+1)}
\end{array} \right),
\]

and the components of \(\mathbf{P}^{(k+1)} \) are as follows:
3.1. Longitudinal deformation of the cylinder

In the case of longitudinal elongation or contraction of the cylinder \((\varepsilon_z = \varepsilon_A)\) with no lateral constraints, the boundary conditions are

\[
u_z = \varepsilon_A z, \quad \sigma_{zz}(R_n) = 0.
\]

Substituting \(r = R_n\) in the expression for the radial component of stress (7), the following equation is obtained:

\[
A_n \left(\frac{\lambda(0) C_{zz}^{(n)} + C_{rr}^{(n)}}{C_{rr}^{(n)}} + B_n \left(-\frac{\lambda(0) C_{rr}^{(n)} + C_{zz}^{(n)}}{C_{zz}^{(n)}} \right) \right) + \left[\frac{\lambda(0) C_{zz}^{(n)} + C_{rr}^{(n)}}{C_{rr}^{(n)}} + \frac{q_{zz}^{(n)}}{q_{rr}^{(n)}} \right] \varepsilon_A = 0.
\]

This equation contains two integration constants of the nth layer \(A_n\) and \(B_n\). Expressing \(B_n\) in terms of \(A_n\) and \(\varepsilon_A\) by means of the second equation in (14), we derive the expression for the integration constant \(A_n\):

\[
A_n = \frac{\sigma_{zz}}{\lambda(0) C_{zz}^{(n)} + C_{rr}^{(n)}} + B_n \left(-\frac{\lambda(0) C_{rr}^{(n)} + C_{zz}^{(n)}}{C_{zz}^{(n)}} \right) + \left[\frac{\lambda(0) C_{zz}^{(n)} + C_{rr}^{(n)}}{C_{rr}^{(n)}} + \frac{q_{zz}^{(n)}}{q_{rr}^{(n)}} \right] \varepsilon_A.
\]

Representation (16) and formulae (14) can then be utilized to calculate the integration constants for all layers.

3.2. Transverse hydrostatic loading

For uniform external lateral compression or tension of the cylinder, the boundary conditions are

\[
u_z = \pm h/2, \quad \sigma_{rr}(R_n) = 0.
\]

The first condition of (17) defines the plane strain mode of deformation so that \(\varepsilon_A = 0\). The second condition can be utilized to produce the equation for the integration constants \(A_n\) and \(B_n\). Substituting the expanded expression from (7) for \(r = R_n\), we obtain:

\[
A_n \left(\frac{\lambda(0) C_{zz}^{(n)} + C_{rr}^{(n)}}{C_{rr}^{(n)}} + B_n \left(-\frac{\lambda(0) C_{rr}^{(n)} + C_{zz}^{(n)}}{C_{zz}^{(n)}} \right) \right) = \sigma_{zz}.
\]

Expressing \(B_n\) in terms of \(A_n\), see (14), we produce the desired formula for the integration constant \(A_n\):

\[
A_n = \frac{\sigma_{zz}}{\lambda(0) C_{zz}^{(n)} + C_{rr}^{(n)}} + B_n \left(-\frac{\lambda(0) C_{rr}^{(n)} + C_{zz}^{(n)}}{C_{zz}^{(n)}} \right),
\]

which, in combination with (14), can be used to calculate \(A_i\) and \(B_i\) \((i = 1, 2, \ldots, n)\), and thus the complete expressions for displacement, strain and stress fields in the cylinder (see formulae (6), (4) and (7)).

4. Axial shear deformation

We assume that the cylinder is subjected to the longitudinal shear \(\varepsilon_{z\theta} = s\) such that the in-plane displacements of the cylinder are

\[
u_z = s z \cos \theta, \quad u_y = -s z \sin \theta,
\]

and the axial displacement of the lateral surface is given by

\[
u_z = s R \cos \theta.
\]

The ends \(z = \pm h/2\) of the cylinder are traction-free. To determine the distribution of vertical displacements through the cross-sectional area of the multilayered cylinder, we generalize the solution used in Hashin (1990). Displacement \(u_z\) is represented in the form
where \(\psi \) is an unknown function. Calculating the stresses by substituting the expressions for displacements into formulae (4) and (1) we observe that there are two non-zero components:

\[
\sigma_{rz} = sG_{tt} \left[\frac{\partial \psi}{\partial r} \right], \\
\sigma_{rz} = sG_{tt} \left[\frac{\partial \psi}{\partial \theta} \right].
\]

Substitution of these stresses into the third equilibrium equation of (3) yields the following second-order differential equation for unknown function \(\psi(r, \theta) \):

\[
G_{rr} \left(\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} \right) + G_{\theta\theta} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{G_{rr} - G_{\theta\theta}}{r} = 0.
\]

It can be observed that representation

\[
\psi(r, \theta) = \left(\arctan B + Br^{-i} - C \right) \cos \theta,
\]

satisfies Eq. (23), where \(i = \sqrt{G_{tt}/G_{rr}} \) and \(A, B \) are the integration constants that are different for each layer. To find these constants we make use of continuity conditions (2).

The expressions of the continuous displacements \(u_k^{(k)}(z) = u_k^{(k-1)}(z_k) \) and traction \(\sigma^{(k)}(z) = \sigma^{(k-1)}(z_k) \) on the interface between \(k \)th and \((k + 1) \)th layers, produce the following equations relating their constants:

\[
\begin{align*}
A_k & = A_{k+1} + B_k + R_k \left(1 + i \right), \\
G_{k} & = G_{k+1} + R_k \left(1 + i \right),
\end{align*}
\]

In the matrix form these equations can be written as

\[
J_k(R_k \mathbf{V}_k + L_k(R_k) = J_{k+1}(R_{k+1} \mathbf{V}_{k+1} + L_{k+1}(R_{k+1}),
\]

where \(\mathbf{V} = [A, B]^T \) is the vector of integration constants of the \(k \)th layer, and \(L_k(R) \) and \(J_k(R) \) are the coefficient matrices:

\[
L_k(R) = \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}, \\
J_k(R) = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
R_k \left(1 + i \right) & \left(1 + i \right) R_k \\
-\left(1 + i \right) & R_k \left(1 + i \right)
\end{bmatrix}, \quad i = 1, 2, \ldots, n.
\]

Eq. (25) can be used to express the integration constants for any \((k + 1) \)th layer in terms of the inner core integration constants \(A_1, B_1 \)

\[
V_{k+1} = Q^{(k+1)} V_k,
\]

where \(Q^{(k+1)} = \Pi_{k+1} Q^{(k)} \), and

\[
N^{(k)} = \frac{R_{k+1}}{2 \lambda^{(k)} G^{(k)}} \begin{bmatrix}
N_{11}^{(k)} & N_{12}^{(k)} \\
N_{21}^{(k)} & N_{22}^{(k)}
\end{bmatrix},
\]

with the components

\[
\begin{align*}
N_{11}^{(k)} & = -R_{k+1}^{-1} \left(\zeta^{(k)} G_{rr}^{(k+1)} - \lambda^{(k)} G_{\theta\theta}^{(k)} \right), \\
N_{12}^{(k)} & = R_{k+1}^{-1} \left(\zeta^{(k)} G_{rr}^{(k+1)} - \lambda^{(k)} G_{\theta\theta}^{(k)} \right), \\
N_{21}^{(k)} & = R_{k+1}^{-1} \left(\zeta^{(k)} G_{rr}^{(k+1)} - \lambda^{(k)} G_{\theta\theta}^{(k)} \right), \\
N_{22}^{(k)} & = -R_{k+1}^{-1} \left(\zeta^{(k)} G_{rr}^{(k+1)} + \lambda^{(k)} G_{\theta\theta}^{(k)} \right).
\end{align*}
\]

However, the integration constant \(B_1 \) should be chosen to be zero to avoid singularity of the stresses at the axis of the cylinder \((r = 0) \), see Eqs. (22) and (24). Thus, the integration constants of the \(i \)th layer are given by

\[
A_i = Q_{11}^{(i)} A_1, \quad B_i = Q_{21}^{(i)} A_1.
\]

Note, that formulae (26) and (27) can be used to relate \(A_n \) and \(B_n \) as follows:

\[
B_n = \frac{Q_{21}^{(n)}}{Q_{11}^{(n)}} A_n.
\]

To determine the remaining independent integration constant, we utilize boundary equation (20). Substituting expressions (21) and (24) we obtain:

\[
A_n R_n^{(n)} + B_n R_n^{(n)} = 2 R_n
\]

which can be solved in combination with (28) to produce:

\[
A_n = \frac{2}{R_n^{(n-1)} + \frac{Q_{21}^{(n)}}{Q_{11}^{(n)}} R_n^{(n-1)}},
\]

Now, from (27),

\[
A_1 = \frac{A_n}{Q_{11}^{(n)}},
\]

and all integration constants can be readily obtained.

5. Transverse shear

In this plane strain problem, we are looking for displacements in the following form:

\[
\begin{align*}
&u_r = u(r) \sin 2\theta, \\
&u_\theta = v(r) \cos 2\theta,
\end{align*}
\]

where \(u(r) \) and \(v(r) \) are two unknown functions of radius \(r \). Substituting these displacements into (4) we obtain strains as

\[
\begin{align*}
&\varepsilon_r = u' \sin 2\theta, \\
&\varepsilon_\theta = \left(\frac{u - 2v}{r} \right) \sin 2\theta, \\
&\gamma_{12} = \left(\frac{2u - v}{r} \right) \cos 2\theta,
\end{align*}
\]

which results in the following representation for stresses:

\[
\begin{align*}
&\sigma_{rr} = C_{rr} u' + C_{rr} \left(\frac{u - 2v}{r} \right) \sin 2\theta, \\
&\sigma_{\theta\theta} = C_{\theta\theta} u' + C_{\theta\theta} \left(\frac{u - 2v}{r} \right) \sin 2\theta, \\
&\tau_{12} = C_{12} \left(\frac{2u - v}{r} \right) \cos 2\theta.
\end{align*}
\]

The equilibrium equation (3) can then be rewritten as a system of two homogeneous differential equations of the second order:

\[
\begin{align*}
&\left(\frac{C_{rr}}{r} \right) u'' + \left(\frac{C_{\theta\theta}}{r} \right) v'' + 2 \left(\frac{C_{12}}{r} \right) u'v' + \frac{2(C_{rr} + C_{\theta\theta})}{r} u = 0, \\
&\left(\frac{2(C_{rr} + C_{\theta\theta})}{r} \right) u'v' + 2 \left(\frac{C_{12}}{r} \right) u + \left(\frac{2(C_{rr} + C_{\theta\theta})}{r} \right) v = 0.
\end{align*}
\]

Solution of this system is sought in the following form:

\[
\begin{align*}
&u(r) = Ar^q, \quad v(r) = Br^q,
\end{align*}
\]

where \(A \) and \(B \) are some integration constants. The requirement of existence of non-zero solution yields the following characteristic equation for values of \(q \):

\[
D q^2 + F q + H = 0,
\]

where
where, similarly, to (11), $Q^{(k+1)} = \prod_{i=k+1}^{n} J_{i}^{-1} (r_{i,1} J_{i-1} (r_{i,1}))$.

Let us find the integration constants for a composite cylinder subjected to the homogeneous boundary conditions at infinity ($r \rightarrow \infty$):

\begin{equation}
\begin{aligned}
 u_{r} &= sr \sin 2\theta, \\
 u_{\theta} &= sr \cos 2\theta,
\end{aligned}
\end{equation}

which yield the following expressions for stresses in the exterior layer:

\begin{equation}
\begin{aligned}
 \sigma_{rr} &= s (C_{rr}^{(n)} - C_{rr}^{(0)}), \\
 \sigma_{\theta \theta} &= s (C_{\theta \theta}^{(n)} - C_{\theta \theta}^{(0)}), \\
 \sigma_{r \theta} &= 2sG_{16}^{(n)}.
\end{aligned}
\end{equation}

We assume that the exterior layer is isotropic. The roots of characteristic equations in this case are $\lambda_{1,2}^{(n)} = \pm 1$, $\lambda_{3,4}^{(n)} = \pm 3$.

and the displacements are given by the following formulae:

\begin{equation}
\begin{aligned}
 u^{(n)} &= A_{1}^{(n)} r + A_{2}^{(n)} r^{3} + A_{4}^{(n)} r^{4}, \\
 \nu^{(n)} &= g_{1}^{(n)} A_{1}^{(n)} r + g_{2}^{(n)} A_{2}^{(n)} r^{3} + g_{4}^{(n)} A_{4}^{(n)} r^{4}.
\end{aligned}
\end{equation}

Substituting these expressions into the boundary conditions (40) we obtain $A_{1}^{(n)} = s$, $A_{2}^{(n)} = 0$. The remaining $A_{3}^{(n)}$ and $A_{4}^{(n)}$ can be found from (38):

\begin{equation}
\begin{aligned}
 A_{2}^{(n)} &= Q_{11}^{(n)} A_{1}^{(1)} + Q_{13}^{(n)} A_{2}^{(1)} + Q_{14}^{(n)} A_{3}^{(1)} + Q_{15}^{(n)} A_{4}^{(1)}, \\
 A_{4}^{(n)} &= Q_{14}^{(n)} A_{1}^{(1)} + Q_{16}^{(n)} A_{2}^{(1)} + Q_{17}^{(n)} A_{3}^{(1)} + Q_{18}^{(n)} A_{4}^{(1)},
\end{aligned}
\end{equation}

where $A_{2}^{(1)}$ and $A_{4}^{(1)}$ are set to be zero to avoid singularity at the center of the composite cylinder. We consider the first and the third equations of the system (38) to find $A_{1}^{(1)}$ and $A_{3}^{(1)}$:

\begin{equation}
\begin{aligned}
 s &= Q_{11}^{(n)} A_{1}^{(1)} + Q_{13}^{(n)} A_{2}^{(1)}, \\
 0 &= Q_{14}^{(n)} A_{1}^{(1)} + Q_{16}^{(n)} A_{2}^{(1)},
\end{aligned}
\end{equation}

which yields $A_{1}^{(1)} = \frac{Q_{21}^{(n)}}{Q_{11}^{(n)} Q_{13}^{(n)} - Q_{14}^{(n)} Q_{16}^{(n)}}$ and $A_{3}^{(1)} = \frac{-Q_{22}^{(n)}}{Q_{11}^{(n)}}$. All integration constants in the solution (36) are thus found.

6. Examples and validation

Several test problems are solved to illustrate the developed analytical procedure and validate it against the existing solutions. In particular, we consider the canonical 2D case of a circular isotropic inhomogeneity in an infinite plane under remotely applied homogeneous loading. Then, we derive the solution for a fiber surrounded by anisotropic interphase zone and loaded as described in Shokrolahi-Zadeh and Shodja (2008) and compare our predictions with their results. And, finally, we provide solutions for hydrostatic loading of a carbon fiber coated by several layers of cylindrically orthotropic pyrolytic carbon.

6.1. Hydrostatic loading and transverse shear in r, θ-plane

Consider plane strain problem for an isotropic elastic inclusion with Young’s modulus E_{1}, Poisson’s ratio ν_{1}, and radius $R_{1} = a$ surrounded by a concentric layer of isotropic elastic material of radius $R_{2} = R$ with material properties E_{2} and ν_{2}. The solution of this problem in the case of an infinitely large outside layer ($R \rightarrow \infty$) can be found in Muskhelishvili (1953), see also Kachanov et al. (2003) for convenient formulae. Muskhelishvili’s solution is provided for unidirectional in-plane tension only, however, the hydrostatic and pure in-plane shear cases can be obtained by superposition.
Table 1
Mechanical properties of constituents in composite cylinder assemblage.

<table>
<thead>
<tr>
<th></th>
<th>E_r</th>
<th>E_z</th>
<th>v_{rz}</th>
<th>v_{rz}</th>
<th>v_{r0}</th>
<th>v_{z0}</th>
<th>G_{12}</th>
<th>G_{02}</th>
<th>G_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>25/14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Matrix</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>5/13</td>
<td>5/13</td>
<td>5/13</td>
</tr>
<tr>
<td>Shell 1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>5/4</td>
<td>5/4</td>
<td>5/4</td>
</tr>
<tr>
<td>Shell 2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>1</td>
<td>5/4</td>
<td>1</td>
</tr>
<tr>
<td>Shell 3</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>3/4</td>
<td>5/4</td>
<td>3/4</td>
</tr>
</tbody>
</table>

For illustration purposes, let us choose the following values of the material parameters: $E_1 = 10$; $E_2 = 1$; $v_1 = 0.2$; $v_2 = 0.4$. The stiffness matrices are then

$$C^{(1)} = \begin{pmatrix} 1.11 & 2.78 & 2.78 & 0 & 0 & 0 \\ 2.78 & 1.11 & 2.78 & 0 & 0 & 0 \\ 2.78 & 2.78 & 1.11 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4.17 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4.17 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4.17 \end{pmatrix}.$$

$$C^{(2)} = \begin{pmatrix} 2.14 & 1.43 & 1.43 & 0 & 0 & 0 \\ 1.43 & 2.14 & 1.43 & 0 & 0 & 0 \\ 1.43 & 1.43 & 2.14 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.36 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.36 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.36 \end{pmatrix}.$$

In the case of transverse hydrostatic loading, the solution is provided in Section 3. It can be observed that the material parameter ratios $\lambda^{(1)} = \lambda^{(2)} = 1$, and the longitudinal strain $\varepsilon_0 = 0$ in this example. The coefficients of matrix Q are given by Eq. (11) in terms of the components of matrices $N^{(i)}$. For the considered problem $Q = N^{(2)}$, so that:

$$Q = \begin{pmatrix} 3.407 & -1.778 \\ -2.407 \frac{v_{r0}}{\varepsilon_r} & 2.778 \frac{v_{r0}}{\varepsilon_r} \end{pmatrix}.$$

and matrix P is of no interest because it is multiplied by $\varepsilon_r = 0$. Now, all integration constants can be found from Eq. (14):

$$A_2 = \frac{1}{3.57 + 0.504 \frac{v_{r0}}{\varepsilon_r}} \quad B_2 = -\frac{0.706}{3.57 + 0.504 \frac{v_{r0}}{\varepsilon_r}} \quad A_1 = \frac{0.294}{3.57 + 0.504 \frac{v_{r0}}{\varepsilon_r}}.$$

Fig. 2 shows variation of σ_r and σ_{00} with radius for several thicknesses of the outer layer. Note that the graphs for $a/R = 0.1$ coincide with the results obtained using Muskhelishvili (1953) formulae for circular inclusion in an infinite plane.

In the case of in-plane shear, the solution is given in Section 5. The coefficients of characteristic equation (34) can be calculated as $D_1 = 46.3$, $F_1 = -462.96$, $H_1 = 416.67$, $D_2 = 0.77$, $F_2 = -7.65$, $H_2 = 6.89$. For both layers, the same values $\lambda_1, \lambda_2 = \pm 1$, $\lambda_3, \lambda_4 = \pm 3$ for the equation roots are obtained. Note that any choice of isotropic material results in these roots of characteristic equation. Distribution of radial and hoop stresses along the line inclined at 45° to x-axis is depicted at Fig. 3. The plots are provided for $a/R \to \infty$; they are indistinguishable from Muskhelishvili (1953) results.

6.2. Remote loading of a cylinder surrounded by an orthotropic interphase layer

In this test problem, we compare our predictions with the results provided in Shokrolahi-Zadeh and Shodja (2008, Example 1, p. 3570). We analyze stress distribution in a core cylinder of radius 1 surrounded by a shell of thickness 0.2 placed in an infinite solid and subjected to a remotely applied combination of tension $2\sigma_0$ in x-direction and compression σ_0 in y-direction. The core and the outside layer (matrix) are transversely isotropic. The shell is cylindrically orthotropic. To evaluate the influence of the shell’s anisotropy, we consider three choices for its material parameters. The case considered by Shokrolahi-Zadeh and Shodja (2008) is de-
noted as “Shell 2”. The material properties of constituent materials are given in Table 1.

Fig. 4 presents distribution of radial and hoop stresses along the x-axis. As expected, our results for “Shell 2” model coincide with the solution of Shokrolahi-Zadeh and Shodja (2008). It can also be seen that the increase in the radial stiffness of the shell results in more radial stress transmitted to the inner cylinder, as well as bigger jumps in the hoop stresses.

6.3. Hydrostatic loading of a carbon fiber surrounded by layers of pyrolytic carbon

This example is relevant for carbon/carbon composites (C/C) manufactured by chemical vapor infiltration. The infiltration procedure results in carbon fibers being surrounded by concentric layers of pyrolytic carbon (PyroC) of different texture, see Reznik and Hüttinger (2002) and Piat et al. (2003). The level of texture determines the orthotropy of material stiffness tensor. In particular, one of the carbon/carbon material systems described in Reznik et al. (2003) and Piat et al. (2008) can be treated as a fiber surrounded by four layers of pyrolytic carbon with mechanical properties provided in Table 2. We consider hydrostatic loading of such a material system. Solution of this problem is not only relevant to thermal treatment of carbon/carbon composites but can also be used to predict the composite’s overall bulk modulus, see Tsukrov et al. (2009). Fig. 5 presents distributions of the radial and hoop components of stress. Note the significant jump in the hoop stress at the interface between the stiffer fiber and relatively soft pyrolytic carbon. Also, significant anisotropy of constituent materials results in a very pronounced deviation from the homogeneous stress field usually assumed for an isotropic fiber in the isotropic matrix following the famous results of Hardiman (1954) and Eshelby (1957).

7. Conclusion

This paper presents cylindrically orthotropic elasticity solutions for a laminated cylinder subjected to homogeneous loading applied to its external surface. Explicit expressions for displacement and stress components are given for three loadcases: transverse hydrostatic tension combined with (or considered separately from) axial elongation (Eqs. (6) and (7)), longitudinal shear loading (Eqs. (21), (22) and (24)), and transverse shear (Eq. (36)). All of these expressions contain sets of integration constants having different values for different layers of the cylinder. Due to the assumption of perfect bonding between layers, in all three loading cases the integration constants can be expressed in terms of the core cylinder constants, see Eqs. (12), (26) and (38), respectively. The core cylinder constants are related to the constants of the outer layer (Eqs. (13), (29) and (42)) which are found from the corresponding boundary conditions.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Science Foundation through the Division of Materials Research Grant DMR-0806906 “Materials World Network: Multi...